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Translator’s Preface
The material in this document is a translation of a “handbook” prepared at Uraniborg,
the observatory of Tycho Brahe, sometime after 1580. The original text may be found in
his published (and edited) Opera Omnia [2, pp. 283–305]. This handbook is a collection
of algorithms for solving various problems in mathematics that arise in the reduction of
astronomical data. Most of Tycho’s assistants lacked mathematical expertise and had to be
taught how to do the necessary calculations. The latter were mainly problems in spherical
trigonometry. Very few people, even today, would know the requisite math since it is rarely
covered in a high school curriculum. It was no different in the sixteenth century.

The present document presents, first, a translation of the text including many added
corrections and clarifications [in brackets]. These, as well as all footnotes, are those of
the translator. There is also an appendix describing the algorithms once more but, this
time, in modern notation with explanations wherever needed. Without this appendix, the
handbook would remain largely inscrutable, even in English.

Tycho Brahe was an astronomer—the greatest observer of all time prior to the invention
of the telescope and, arguably, the first real scientist, in the the way that we understand
that word. Galileo followed a generation later and then Kepler, Newton, etc. after that.
It is always interesting to see how significant achievements were carried out for the first
time. This handbook provides some insight into the practice of world-class observational
astronomy when it was new.
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1 Renaissance Math
You would think that mathematics would be the one language that anyone who had ever
studied it would understand. However, it is undoubtedly apparent from the translated text
(some of the original shown below) that math was not always what it is today.

Figure 1: Plane Algorithm IV

This does not look like math at all. For instance, there are no equations anywhere. The
equals sign had only recently been “invented” and its use had evidently not yet spread to
Denmark. In fact, there is no algebra of any kind; symbolic expressions had not yet been
“invented” either. Even figures are scarce. Moreover, what descriptions there are do not
seem to make sense. Some are not even correct! We cannot blame Tycho Brahe for this.
Most, if not all, of this handbook was written by his assistants. [2, pg. 315]

Clearly, some preliminary background is in order. To address this need, we offer a
brief discussion focusing on trigonometry in general as well as the now obsolete technique
of prosthaphaeresis then describe the algorithms in modern notation, with examples.
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1.1 Background
The notes below are not meant to be a comprehensive historical summary. They are limited
to an explanation of the most noticeable ways in which Renaissance math was different
from what is standard today. These differences are ubiquitous in the math employed at
Uraniborg. Other differences will be obvious from the translation.

1.1.1 Trigonometry

Trigonometry was developed primarily because people had a need to do calculations based
on measurements, especially in astronomy. Calculating is the thing that most distinguishes
trigonometry from geometry. In classical geometry, measuring is forbidden so calculations
are never discussed.

In ancient times, the study of astronomy was of great importance, in part because it
was the basis of astrology and astrology was important for the same reasons that religion
is/was important. Even as late as the seventeenth century, astronomers earned much of
their income by casting horoscopes. Tycho Brahe did so repeatedly even though, in later
life, he did not really believe that they had any predictive power.

Conceptually, trigonometry starts with the chord, the line segment joining the ends of
two radii of a circle. Geometry tells you how to construct a chord; trigonometry tells you
its length. That is where it all begins.

Around 150 CE, when Claudius Ptolemy wrote the Almagest, an astronomy book that
remained the ultimate authority on the subject for more than a thousand years, he began by
showing how to construct a table of chords—length as a function of angle. After Ptolemy,
Hindu mathematicians introduced the notion of the half-chord, today referred to as the sine
and, in Tycho’s day when everything was in Latin, the sinus or, sometimes, sinus rectus to
distinguish it from the sinus versus (versine = 1 − cosine).

The key point here is that the sine, a half-chord, was a length. As such, its value
had units of length. This is in sharp contrast to trigonometry today wherein the sine is
not a length but a transcendental function with values and arguments that are necessarily
dimensionless (no units). Any modern trigonometry textbook will discuss trigonometric
functions with reference to a unit circle (i.e., radius = 1) and describe angles, especially
within a circle, in terms of radians (which seems like a unit but is not). In the sixteenth
century, sines still had length (conceptually) so a table of sines contained entries that were
listed with units of length based on a circle with a radius chosen for convenience.

What was convenient in those days was simplifying the math as much as possible. This
meant, among other things, avoiding fractions1 so calculations, particularly in astronomy,
were carried out using integers as much as possible. In Renaissance trigonometry, the trick
employed to avoid fractions was to define sines, cosines, etc. using a standard circle with
a very large radius. Astronomers such as Copernicus and Regiomontanus used a standard

1Decimals, as used today, were not introduced until the seventeenth century.
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circle with a radius of ten thousand.2 Tycho Brahe used a radius of ten million—seven
significant figures, enough precision to count arc-seconds in a complete circle.3 Therefore,
when he looked up the sine of any angle, he found an integer of at most seven digits. For
the sine of 90 degrees, the sinus totus (or whole), he got a value of 10,000,000. As with
such tables today, they were used both forwards (to find, for example, the sine of a given
angle) or backwards (to find the angle, given its sine). The table also included tables of
differences for doing linear interpolation, again forwards or backwards.

The convenience of treating the sine as an integer with units of length had one minor
drawback. Sines, cosines, tangents (and their reciprocals) are all ratios of lengths and,
therefore, dimensionless by definition. Whenever one wished to look up an angle in a
table, one had to pre-multiply the angle by whatever standard radius that table employed,
that is, by sinus totus, the whole = sin(90). To go backwards from a table entry to an angle4

required dividing by the whole afterwards. This constant flipping of units is found in nearly
all of the algorithms in the handbook and makes them appear incomprehensible if you do
not understand the rationale underlying the construction of the tables. Finally, these tables
were so useful that they were referred to as the canon foecundus, the fertile/fruitful canon,
another unfamiliar reference found throughout all of Tycho’s manuscripts.

Figure 2 shows a page from François Viète’s trigonometric tables, published in 1579.5

The standard radius for his tables is 100,000. The first row shows entries6 for 0.5 degrees,
as follows:

sin(0.5) cos(0.5)| tan(0.5) sec(0.5)|cot(0.5) csc(0.5)

The angle interval between rows is 1 arc-minute, i.e., 0.5 degrees per page.

1.1.2 Spherical Trigonometry

Triangles are familiar to all but spherical triangles much less so. The latter are drawn on a
sphere, not a flat surface, and place a greater strain on the visual imagination. For instance,
despite appearances, the two triangles shown in Figure 3 are identical (congruent); they
have merely been drawn from different viewpoints (see pg. 27).

Spherical trigonometry, trigonometry with spherical triangles, has been well-known
for nearly two thousand years because it is an essential tool in astronomy. [1] Almost
all of the computations carried out at Uraniborg involved spherical trigonometry, usually
finding the side of a spherical triangle given other sides and angles. As we shall see, the
side of a spherical triangle is measured in degrees (or radians) since the length of such a
side is proportional7 to the central angle which it subtends.

2Ptolemy used a radius of sixty since much of his math was sexagesimal (base-60).
3This was essentially that utilized by Regiomontanus in 1541. [6]
4i.e., finding an inverse sine
5retrieved from https://www.e-rara.ch.
6some with extra digits, first-order differences shown in red
7or equal, in the case of a unit sphere
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Figure 2: A Page From Viète’s Trig Tables (1579) [5]
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Figure 3: Two Identical Spherical Triangles

1.1.3 Prosthaphaeresis

The technique of prosthaphaeresis (π%oσϑαφ) was developed as a method to simplify
multiplication, something that became rather tedious when you had to multiply seven-
digit numbers over and over again, as was routine at Uraniborg. The method worked very
well but became obsolete once logarithms were developed, shortly after Tycho’s death.
In fact, logarithms were used by his former assistant, Johannes Kepler, who incorporated
them directly as a novel feature of the Rudolphine Tables.

Prosthaphaeresis took advantage of three trigonometric identities that were known at
the time. These identities are listed in Equation 1.

sin(A)sin(B) = cos(A−B)−cos(A+B)

2

cos(A)cos(B) = cos(A−B)+cos(A+B)

2

sin(A)cos(B) = sin(A+B)+ sin(A−B)

2

(1)

The left-hand-sides of (1) appear in some basic formulas of spherical trigonometry (see
sect. 4.2). These identities enabled anyone doing astronomy to replace a multiplication
of large integers with a combination of addition and subtraction. (Dividing by two was
trivial.)

It was recognized that the benefit of prosthaphaeresis was not limited to astronomy.
Any integer, appropriately scaled, could be taken to be the sine of some angle that could
be found in the body of the fertile canon. You could therefore use (1) to multiply any
two numbers provided that you took care of the “decimal point” separately. The latter
procedure is very easy and will be familiar to anyone old enough to have used a slide rule.
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Using phosthaphaerisis made computations easier for Tycho but more complicated to
explain. For instance, consider the algorithm given for finding the side of a right spherical
triangle opposite the right angle8 when the adjacent sides, a and b, are known.

Compare the language of the handbook (cf. page 15):

to the language of today (with a > b),

cos(c) = sin[(90−a)+b]+ sin[(90−a)−b]

2

since, = sin[90− (a −b)]+ sin[90− (a +b)]

2

= sin[90− (a −b)]− sin[(a +b)−90]

2
; if necessary

= cos(a −b)+cos(a +b)

2
= cos(a)cos(b)

just to avoid that final multiplication.

1.2 Algorithms
These algorithms were in regular use by Tycho Brahe and his staff from 1580 onwards.
The handbook was compiled later.

In the algorithms and the figures, angles (vertices) and other points will be labeled with
an uppercase letter and opposite sides in the triangle by the corresponding lowercase letter.
Other line segments will be labeled with a lowercase letter or a point pair, e.g., AB or ÙAB .
Known quantities will be shown in red; those sought will be marked with a X.

For each algorithm, we shall give a numerical example, including one from Tycho’s
logs. Here, we shall utilize the algorithms shown in the handbook even if there is a simpler
form so that each one matches the translation.9 When describing spherical triangles, this
means using phosthaphaeresis instead of multiplication. We shall also supply a relevant
figure, drawn to scale.

8almost always, the only one
9Numerical output shown may have some round-off error.
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2 Algorithms for Plane Triangles [P1 – P7]

2.1 Algorithm P1
Given two sides adjacent to the right angle of a right Demonstration

of this Algorithm

D

E

O

C
B

triangle, to find both of the other angles and the remaining
side.
Angles Multiply the side opposite the angle sought by the whole

and divide the result by the remaining side to give a number
which, sought in the body of the fertile canon, will show
the desired angle. The remaining angle is the complement
of 90.

Side To find that which is subtended by the right angle,
multiply another side by the whole and divide by the
sine of the angle by which the same side is subtended.
The desired side, which is opposite to the right angle, is
produced.

2.2 Algorithm P2
Given two sides of a right triangle, one adjacent to the right angle

C A D

E

B
and the other opposite the same, to find the angles and the remaining
side.

Multiply the side adjacent to the right angle by the whole and divide
[the result] by the side subtending the right angle to give the sine of the
angle subtended by that side. The third angle is given by the complement
of 90 of this arc. If you multiply the sine of this [third angle] by the side subtending the
right angle and divide by the whole, it gives the other side adjacent to the right angle that
was sought.

2.3 Algorithm P3
Given the other acute angles of a right triangle, along with one side, to find the remaining
two sides.

I. If the side subtending the right angle is given, multiply the length of this side by the
sine of the angle that is opposite the side being sought and divide by the whole to
give the side that was sought.

II. If, however, one of the two sides adjacent to the right angle is given and you wish to
measure the side subtending the right angle, multiply the given side by the whole and
divide by the sine of the angle opposite to it to give the length of the side opposite
the right angle.
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III. If you want to find the remaining side adjacent to the right angle, multiply the length
of the given side by the sine of the complement [cosine]10 of the angle opposite to
it and divide by the sine of the angle itself. This gives the remaining side that was
sought.

2.4 Algorithm P4
Given two sides and the included angle of a non-right triangle, to find the [other] angles
and the remaining side.

I. If the triangle has two equal sides, the given angle halved, subtracted from 90, gives the
remaining [equal] angles. For the third side: If you multiply the [given] side by [the
sine of] half the given angle and divide by the whole, it yields half of the remaining
side, which is to be doubled.

II. However, if the triangle has unequal sides and the included angle is acute, [multiply
the given larger side by the sine of the given angle, and divide by the whole to give
finding I.]11 Multiply the larger side by the cosine of the given angle, and divide by
the whole yielding finding II from which subtract the smaller side to give finding III.
Now, multiply finding I by the whole and divide by finding III. The result, found in
the fertile canon, gives the complement [supplement] of the angle which is opposite
the larger side.

For the remaining side, multiply finding I by the whole and divide by the sine of the
angle just found, opposite the larger side.12 This gives the remaining side which was
sought.

But, should the angle be obtuse, multiply the sine of the complement of the obtuse
angle [supplement] by the larger side and divide by the whole to give finding I. Then,
multiply the sine of the obtuse angle by the larger side and divide by the whole to
give finding II. Afterwords, add finding I to the smaller side to give finding III. Now,
multiply finding II by the whole and divide by finding III. This, sought in the fertile
canon, gives the value of the angle adjacent to the smaller side.

For the remaining side, multiply finding II by the whole and divide by the sine of the
angle just found that is adjacent to the smaller side. This gives the third side which
was sought.

N.B. Where the angle is obtuse, the complement [supplement] is from 180. You have
the complement [of this supplement] by subtracting 90 from it [the obtuse angle].
Actually, you have the sine of an obtuse angle by subtracting it from 180 and taking
the sine of the remainder, as before, the complement of 90.

10Hereafter, this will be translated as cosine directly.
11This definition is absent in the original text.
12This angle is obtuse so its sine equals that of its supplement.
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2.4.1 A Shorter Solution for this Algorithm Without Dropping a Perpendicular

1. Given an angle (acute or obtuse), [find] the complement of the semicircle, that is
180, [take] half, and find the tangent [of the latter] from the Canon of Tangents.

2. Then, add the smaller given side to the larger and find half the sum which will be
finding I.

3. From finding I subtract the smaller side again and the remainder will be finding II.

4. Now the third finding will be the tangent of the complement of the angle previously
halved.13

Practice

Now, multiply finding II by finding III and divide by finding I to give the tangent of
[half of] the difference of the angles which were subtended by the given sides. Therefore,
if you subtract this difference found in the Canon of Tangents from the angle previously
found and halved, it will be clear which angle was subtended by the smaller of the given
sides. Again, if you add this to the same angle found from the complement, the angle
subtended by the larger side is revealed. Or else, given two angles in a planar triangle,
there exists a third by their complement known as the semicircle.

2.5 Algorithm P5
Given a non-right triangle with two sides and an opposite angle, or two angles with a side
that is either subtended or a hundred degrees apart, find the remainder from here.

[no text]

13i.e., the output of step 1
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2.6 Algorithm P6
Given three sides of a non-right triangle, to find all of the angles.

A

CB
E F

D

G

Demonstration of Algorithm P6

I. Equal-sided In a triangle of three equal sides, which they call isopleurum, the angles
are of 60 parts [here, degrees].

II. Equal-legged In a triangle of two equal sides, which they call aequicrurium, multiply
half the base by the whole, and divide by one of the equal sides. This gives the sine
of the half-angle enclosed by the two equal sides. Therefore, since the rest is the
same, the complement of this will indicate the amount of either of the remaining
angles.

III. Scalene In a triangle of three unequal sides, take the smallest side and the next-larger
side, add them to each other, and subtract them, multiply these two by each other and
divide [the product] by the length by the greatest side. This gives finding I. Subtract
this from the largest side, halve the remainder and add finding I and you will have
finding II. Multiply this second finding by the whole and divide it [the product] by
the middle side, that is, nearest the smallest and largest. This gives the complement
of the angle opposite the smallest side.

For the rest of the angles, take the half of the remainder previously given before
(from the half-completed second finding) and redo [with] the smallest side, as if it
were opposite the angle (which is implied). This gives the complement of the angle
opposite the middle side. Therefore, the third [angle] will be known.
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2.7 Algorithm P7
Knowing the three angles of a triangle, to find each of the sides.

Double the sine of any angle and the length of the side opposite to this angle will result
in such parts since the radius of the circle is the whole sine.

[The sides cannot be determined from angles alone since similar triangles have all their
angles equal.]
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3 Algorithms for Spherical Triangles [S1 – S9]

3.1 Algorithm S1
Given two sides of a right triangle, find the third opposite the right [angle].

Operation:
Add the smaller side and the complement of the larger one to each other, and take away.
Add the sine of each result. If the smaller [side] is greater than the complement of the
larger, subtract the other14 and take half of the difference and you will have the cosine of
the remaining side sought.

3.2 Algorithm S2
Given two sides of a right triangle, to find whichever angle.

Operation:
If the side opposite the right angle has not been given, this side must first be sought by the
previous operation [3.1] and from there proceed in this manner [Sine Rule]: Multiply the
sine of the side opposite the angle sought by the whole sine and divide the product by the
sine of the side subtending the right angle. The sine of the angle sought is obtained, the
arc of which measures the size of that angle.

3.3 Algorithm S3
Given one angle of a right triangle with an adjacent side, to find the other angle opposite
the given side.

Operation:
Add and subtract the smaller given and the complement of the larger. If the angle is larger
than the adjacent side, add the sines of the results; otherwise, subtract them. Take half of
the result to get the cosine of the angle sought, or the sine of the side opposite the given
angle when the angle is larger than the adjacent side.

N.B. This applies when a side adjacent to the right angle is given. It should be noted
that, if the length of the given side is less than the given angle, both must be added, and
taken away, and the sines of the results added and halved to give the cosine of the angle
sought. However, when the side is greater than the angle, you can use it, as in the attached
example, by subtracting the sines, taking the data itself, not the complement of the larger.15

14That is, if θ is negative, replace sin(θ) with− sin(−θ) for consistency with the sine table.
15Actually, complements should not be used in either case.
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But if both givens exceed the quadrant [90°], then work with the complement [supplement]
of each,16 combining them then halving to find the cosine of the angle sought.

3.4 Algorithm S4
With right triangles, given one angle and any side, to find the rest.

I. If the given side is not opposite the right angle [and is opposite the given angle], then
multiply the sine of this side by the whole and divide by the sine of the given angle.
This gives the sine of the side subtending the right angle. Algorithm S1 [Cosine
Rule] then gives the remaining side, Algorithm S2 the angles.

II. If the given side is opposite the right angle, multiply its sine by the sine of the given
angle and divide the product by the whole. This gives the sine of the side opposite
the given angle. Find the rest by the first and second algorithms, as before.

If the right angle and the given angle surround the given side, then use the previous
[Algorithm S3] for the remaining angle and the following for the remaining sides.

3.5 Algorithm S5
Given the two remaining angles of a right triangle, to find any side.

Multiply the cosine of the non-right angle opposite to the subtending side sought by
the whole and divide the product by the sine of the remaining non-right angle. The result
is the cosine of the side sought.

For the rest of the sides, multiply the sine of the side just found by the sine of the angle
looking at the other side sought, whether a right angle or not, and divide the product by
the sine of the angle which the newly found side subtends. This will produce the sine of
the desired side.

3.6 Algorithm S6
Given two sides and the included angle of a non-right triangle, to find the remaining side.

Add the smaller side and the complement of the larger, and take away. Add the sines
of the results to each other if the supplement of the larger side is greater than that of the
smaller side; otherwise take it away when it is smaller [negative argument]. Half of the
result will be finding I which, subtracted from the first addend, will give finding II. If the
given angle is acute, multiply II by the cosine of the angle; if it obtuse, multiply by the
sine of the excess by which it exceeds the quadrant. Divide by the whole and you will

16sin(180−θ) = sin(θ)
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have finding III. Add this to finding I if the angle given is acute or subtract from finding I
if obtuse. You will have the cosine of the side sought.

An Observation Regarding This Algorithm

If one of the sides surrounding the given angle is greater than the quadrant, the resulting
opposite side is less than the quadrant. If the product of multiplication is greater than
finding I, subtract finding II multiplied by finding I. The cosine of the side sought is left.

3.7 Algorithm S7
Given two angles about a side of a non-right triangle, to find the remaining angle.

The original text contains two errors: a sign error in the last step and a missing halving
operation earlier. Both errors have been corrected in the following description which is,
once again, just the Cosine Rule.

Add the smaller angle and the complement of the larger angle to each other, and take
away. Add the sines of the results if the complement of the larger angle exceeds the smaller
angle, or subtract if it is less. [Halve the result] to give finding I which, subtracted from
the first addend, will give finding II. Multiply [this] by the cosine of the given side then
divide by the whole to give finding III. [Subtract finding I from this] and you will get the
cosine of the angle sought. Thus, the operation is similar to the previous one.

3.8 Algorithm S8
Given two angles and a side opposite one in a non-right triangle, to find the remaining
sides and angle.

This also contains errors and omissions. Changes shown will produce a correct result.
Here, it is necessary to resolve the triangle into two A

B
C

D

right triangles by drawing a perpendicular from one of the
unknown angles, falling inside or outside the triangle, and
then proceed using III and IV. For example, let ABC be
the triangle, the angles at A and B being known along with
with the side ÙAC . I want to find the side ÙB A. I therefore
draw perpendicular ÙC D from unknown angle C to ÙB A.
Therefore, right triangle C AD has the given angle A and
adjacent side ÙAC . Therefore, ÙAD will be given by the
third [III].

I. Add the smaller to the complement of the larger and take away. Subtract the sines of
the results then halve and you will have the cosine of side ÙAD. [Need ÙDC first (Sine
Rule), then ÙAD (Cosine Rule), then angle ACD, referenced below.]
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II. Then, using procedure I [S4 II], find ÙDC .

III. Finally, in the other right triangle BDC, for the side ÙBC opposite to the right angle,
multiply the sine of the side ÙDC by the whole and divide by the sine of the given
angle at B. This gives the sine of side ÙBC .

IV. For side ÙBD use procedure I, the smaller side ÙDC and the supplement of the greaterÙBC , add to each other and take away. Add the sines of each and halve and you will
have the cosine of side ÙBD. [Partly unclear. See S4]

Therefore, add the side ÙBD to ÙAD previously found and you will have the whole ÙB A
known. Now, for the angle ACB use procedure III, as above, to find angle DCB which must
be added to angle ACD previously found and the whole angle ACB which was sought will
be found. The operation is similar when the perpendicular falls outside the triangle.

3.9 Algorithm S9
Given three sides of a non-right triangle, to find any angle.

Of two sides surrounding the angle sought, add the smaller side and the supplement
[complement] of the larger side to each other, and take away. If the complement of the
greater side exceeds the smaller, add the sines of the results; otherwise subtract them. Half
of the product is finding I which, subtracted from the first addend, gives finding II. [cf. S6]
The third finding is the difference between finding I and the cosine of the remaining side
opposite the angle sought. Now, multiply finding III by the whole and divide by finding
II. This gives the cosine of the angle sought if it is acute but, if it is obtuse, the arc found
must be joined to the quadrant. (This angle is acute when finding I is less than the cosine
of the third, opposite side but obtuse when it is greater than the same.)

Various Cases

I. N.B. If the surrounding sides exceed 90 [degrees], take the complement from the south
pole.

II. When the greater side exceeds the quadrant, it is necessary to work through its excess
of 90. Finding III is then obtained by adding finding I to the cosine of the side
subtending the angle sought, not subtracting it as described in the algorithm.

III. If one of the surrounding sides exceeds 90 and the opposite side exceeds 90, add the
whole sine to finding I and divide by finding II. This produces the complement of
the angle sought. In other words,

IV. If one side surrounding the angle sought exceeds the quadrant and the opposite side
does as well, subtract finding I from this sine.
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4 Examples
Even in translation, the algorithms in this handbook are not completely transparent. The
numerical examples in this section should provide the necessary clarification.

In each, we shall use modern notation and the unit circle. By setting sinus totus = 1,
we will eliminate any multiplication or division by this factor appearing in the original
description.

These examples bring up another issue, not specific to the algorithms. In general, sine
tables go from zero to ninety degrees with sines from zero to one. However, in numerical
computations, values outside these ranges (obtuse angles, negative sines) often occur. Such
quantities are readily handled using complements and supplements of angles, something
that must have been routine at Uraniborg.

4.1 Plane Algorithms

Algorithm P1
Given two sides adjacent to the right angle of a right triangle, to find both of the other
angles and the remaining side.
Angles:

I = a

b
= tan(A)

XA = tan−1(I )

XB = 90− A

Side:

I = a

c
= sin(A)

Xc = a

sin(A)

b c

aC

A

B

Example P1
C = 90 a = 10 b = 5
Angles:
A = tan−1(10/5) = 63.4349°
B = 90− A = 26.5651°
Side:
c = 10/sin(A) = 11.1803

19



Algorithm P2
Given two sides of a right triangle, one adjacent to the right angle and the other opposite
the same, to find the angles and the remaining side.

XA = sin−1
(a

c

)
XB = 90− A

Xb = c sinB

b c

aC

A

B

Example P2
C = 90 a = 10 c = 11.1803
10/11.1803 = sin(A) = 0.894427
A = sin−1(0.894427) = 63.4349° ; from fertile canon
B = 90− A = 26.5651°
b = 11.1803 sin(B) = 5
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Algorithm P3
Given the other acute angles of a right triangle, along with one side, to find the
remaining two sides.

Given c:
Xb = c sin(B)

Given a:
Xc = a

sin(A)
Last side (given a):

Xb = a sin(B)

sin(A)
= c sin(B)

b c

aC

A

B

Example P3
A = 63.4349° B = 26.5651° C = 90
c = 11.1803
b = c sin(B) = 5
a = 10
c = a

sin(A)
= 11.1803

Last side (given a)

b = a sin(B)

sin(A)
= 5
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Algorithm P4
Given two sides and the included angle of a non-right triangle, to find the [other] angles
and the remaining side.
Isoceles:

XA = B = 90− C

2

Xc = 2 a sin

(
C

2

)

c

ab

A B

C

Example P4 Isoceles
C = 24° a = b = 10
A = B = 90−24/2 = 78°
c = 2(10) sin(24/2) = 4.15823
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Acute:

I = c sin(A) = BD

I I = c sin(90− A) = AD

I I I = I I −b =C D

∠BC D ≡φ= tan−1
(

I

I I I

)
XC = 180−φ
XB = 180− A−C

Xa = I

sin(φ)

c

b
A

B

C
D

Example P4 Acute
A = 25° b = 5 c = 7
I = 7 sin(25) = 2.95833
I I = 7 sin(90−25) = 6.34415
I I I = I I −5 = 1.34415

φ= tan−1
(

I

I I I

)
= 65.5647°

C = 180−φ= 114.435°
B = 180− A−C = 40.5647°

a = I

sin(φ)
= 3.24938
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Obtuse:

I = b sin(A−90) = AD

I I = b sin(A) =C D

I I I = c + I = BD

XB = tan−1
(

I I

I I I

)
XC = 180− A−B

Xa = I I

sin(B)

c

b
a

A
B

C

D

Example P4 Obtuse
A = 114° b = 7 c = 5
I = 7 sin(114−90) = 2.84716
I I = 7 sin(114) = 6.39482
I I I = 5+ I = 7.84716

B = tan−1
(

I I

I I I

)
= 39.1773°

C = 180− A−B = 26.8227°

a = I I

sin(B)
= 10.1228
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Alternate(shorter):

x = tan

(
180− A

2

)
I = b + c

2
I I = I − c ;b > c

I I I = x

tanHalfDiff = I I × I I I

I

XB = tan−1(tanHalfDiff )+90− A

2
XC = 180− A−B

Xa = c
sin(A)

sin(C )
; sine rule

c b

a

A

B C

Example P4 Alternate
A = 110° b = 7 c = 5

x = tan

(
180−110

2

)
= 0.700208

I = 7+5

2
= 6

I I = I −5 = 1
I I I = x = 0.700208

tanHalfDiff = I I × I I I

I
= 0.116701

B = tan−1(tanHalfDiff )+90−110/2 = 41.6564°
C = 180−110−B = 28.3436°

a = 5
sin(110)

sin(C )
= 9.89654
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Algorithm P6
Given three sides of a non-right triangle, to find all of the angles.

Equal-sided:
XA = B =C = 60°

Equal-legged (a and b):
φ= sin−1

( c

2b

)
XA = B = 90−φ

XC = 2φ
Scalene:

I = (b +a)(b −a)/c

I I = c − I

2
+ I

x = sin(90− A) = I I

b
XA = 90− sin−1(x)

y = sin(90−B) = c − I

2 a
XB = 90− sin−1(y)
XC = 180− A−B

c

b a

A B

C

Example P6 (scalene)
a = 5 b = 7 c = 10
I = (7+5)(7−5)/10 = 2.4

I I = 10− I

2
+ I = 6.2

x = sin(90− A) = I I

7
= 0.88571

A = 90− sin−1(x) = 27.66045°

y = sin(90−B) = 10− I

10
= 0.76

B = 90− sin−1(y) = 40.53580°
C = 180− A−B = 111.80375°
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4.2 Spherical Algorithms
Algorithm S1
Given two sides of a right triangle, find the third opposite the right [angle].

∠C = 90°:

x = cos(a)cos(b)

= sin[(90−b)+a]+ sin[(90−b)−a]

2

= sin[(90−b)+a]− sin[a − (90−b)]

2

Xc = cos−1(x)

A

B

C

a

b

c

Example S117

C = 90° a = 40° b = 45°

x = sin((90−45)+40)+ sin((90−45)−40)

2

x = sin(85)+ sin(5)

2
= 0.541675

c = cos−1(0.541675) = 57.2022°

17as often, the picture is somewhat deceptive
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Algorithm S2
Given two sides of a right triangle, to find whichever angle.

∠C = 90°
Find ∠A using the Sine Rule (after
S1, if side c is unknown):

sin(a)

sin(A)
= sin(c)

sin(90)
= sin(c)

x = sin(A) = sin(a)

sin(c)

XA = sin−1(x)

A

B

C

a

b

c

Example S2
C = 90° a = 40° c = 57.2022°

x = sin(40)

sin(57.2022)
= 0.764689

A = sin−1(0.764689) = 49.8793°
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Algorithm S3
Given one angle of a right triangle with an adjacent side, to find the other angle opposite
the given side.

∠C = 90°
Find ∠B using the Cosine Rule:

x = sin(A)cos(b)

= sin(A+b)+ sin(A−b)

2

XB = cos−1(x)

A

B

C

a

b

c

Example S3
C = 90° A = 49.8793° b = 45°

x = sin(94.8793)+ sin(4.8793)

2

= sin(180−94.8793)+ sin(4.8793)

2

= sin(85.1207)+ sin(4.8793)

2
= 0.540717

B = cos−1(0.540717) = 57.2676°
Were b > A, the subtraction mentioned earlier would be used.
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Algorithm S4
With right triangles, given one angle and any side, to find the rest.

∠C = 90° Case I, given A and a:

x = sin(a)

sin(A)

Xc = sin−1(x)

x = cos(c)

cos(a)
[Cosine Rule]

Xb = cos−1(x)

x = sin(A)cos(b)

= sin(A+b)+ sin(A−b)

2

XB = cos−1(x)

A

B

C

a

b

c

Example S4
C = 90° A = 49.8793° a = 40°

x = sin(40)

sin(49.8793)
= 0.84059

c = sin−1(0.84059) = 57.2022°

x = cos(57.2022)

cos(40)
= 0.70711

b = cos−1(0.70711) = 45°

x = sin(94.8793)+ sin(4.8793)

2
(see Example S3)

= sin(180−94.8793)+ sin(4.8793)

2

= sin(85.1207)+ sin(4.8793)

2
= 0.54072

B = cos−1(0.54072) = 57.2676°
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Algorithm S5
Given the two remaining angles of a right triangle, to find any side.

∠C = 90° Find a and b:

x = cos(A)

sin(B)
[Cosine Rule]

Xa = cos−1(x)

x = sin(a)sin(B)

sin(A)
[Sine Rule]

Xb = sin−1(x)

A

B

C

a

b

c

Example S5
C = 90° A = 49.8793° B = 57.2676°

x = cos(49.8793)

sin(57.2676)
= 0.76604

a = cos−1(0.76604) = 40°

x = sin(40)sin(57.2676)

sin(49.8793)
= 0.70711 (using phosphaeresiss on the numerator)

b = sin−1(0.70711) = 45° (Find c in the same way.)
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Algorithm S6
Given two sides and the included angle of a non-right triangle, to find the remaining side.

Given a, b and C, find c:

I = cos(a)cos(b) ; (a > b)

= sin[(90−a)+b]+ sin[(90−a)−b]

2

I I = sin(a)sin(b)

= sin[(90−a)+b]− sin[(90−a)−b]

2
I I I = I I ×cos(C )

x = I + I I I

Xc = cos−1(x)

A

B

C

a

b

c

Example S6
a = 81.3508° b = 40° C = 59.6187°

I = sin[(90−81.3508)+40]+ sin[(90−81.3508)−40]

2

= sin[(90−81.3508)+40]− sin[40− (90−81.3508)]

2
= 0.115201

I I = sin[(90−81.3508)+40]− sin[(90−81.3508)−40]

2

= sin[(90−81.3508)+40]+ sin[40− (90−81.3508)]

2
= 0.635478

I I I = I I ×cos(59.6187) = 0.321394

x = I + I I I = 0.436594

c = cos−1(0.436594) = 64.1132°
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Algorithm S7
Given two angles about a side of a non-right triangle, to find the remaining angle.

Given B, C and a, find A:

I =−cos(B)cos(C ) ; (C > B)

=−sin[(90−C )+B ]+ sin[(90−C )−B ]

2

I I = sin(B)sin(C )

= sin[(90−C )+B ]− sin[(90−C )−B ]

2
I I I = I I ×cos(a)

x = I + I I I

XA = cos−1(x) = 180−cos−1(−x)

A

B

C

a

b

c

Example S7
B = 38.0513° C = 59.6187° a = 81.3508°

I =−sin[(90−59.6187)+38.0513]+ sin[(90−59.6187)−38.0513]

2

=−sin[(90−59.6187)+38.0513]− sin[38.0513− (90−59.6187)]

2
=−0.398259

I I = sin[(90−59.6187)+38.0513]− sin[(90−59.6187)−38.0513]

2

= sin[(90−59.6187)+38.0513]+ sin[38.0513− (90−59.6187)]

2
= 0.531727

I I I = I I ×cos(81.3508) = 0.079963

x = I + I I I =−0.318296

A = cos−1(−0.318296) = 180−cos−1(0.318296) = 108.560°
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Algorithm S8
Given two angles and a side opposite one in a non-right triangle, to find the remaining
sides and angle.

Given A, B and b, find the rest
(∠D = 90°):

x = sin(A)sin(b)

= cos(A−b)−cos(A+b)

2

ÙDC = sin−1(x)

x = cos(b)

cos(ÙDC )
; or use complements

ÙAD = cos−1(x)

x = sin(ÙAD)

sin(b)

∠AC D = sin−1(x)

x = sin(ÙDC )

sin(B)

Xa = sin−1(x)

x = cos(ÙBC )

cos(ÙDC )
; or use complements

ÙBD = cos−1(x)

Xc = ÙAD +ÙBD

x = sin(ÙBD)

sin(a)

∠BC D = sin−1(x)

XC =∠AC D +∠BC D

A

B
C

D b

a

c
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Example S8
A = 62.9661° B = 70.3208° b = 48.6174° (D = 90°)

x = cos(14.3487)−cos(111.5835)

2
= cos(14.3487)+cos(68.4165)

2
= 0.668331

ÙDC = sin−1(0.668331) = 41.9384°

x = cos(48.6174)

cos(41.9384)
= 0.888716

ÙAD = cos−1(0.888716) = 27.2876°

x = sin(27.2876)

sin(48.6174)
= 0.611022

∠AC D = sin−1(0.611022) = 37.6635°

x = sin(41.9384)

sin(70.3208)
= 0.709787

a = sin−1(0.709787) = 45.2176°

x = cos(45.2176)

cos(41.9384)
= 0.946968

ÙBD = cos−1(0.946968) = 18.7432°

c = 27.2876°+18.7432°= 46.0308°

x = sin(18.7432)

sin(45.2176)
= 0.452709

∠BC D = sin−1(0.452709) = 26.9176°

C = 37.6635°+26.9176°= 64.5811°
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Algorithm S9
Given three sides of a non-right triangle, to find any angle.

Given a, b and c, find A:

I = cos(b)cos(c) ; (b > c)

= sin[(90−b)+ c]+ sin[(90−b)− c]

2

= sin[(90−b)+ c]− sin[c − (90−b)]

2

I I = sin(b)sin(c)

= sin[(90−b)+ c]− sin[(90−b)− c]

2

= sin[(90−b)+ c]+ sin[c − (90−b)]

2

I I I = sin(90−a)− I

= cos(a)− I

x = I I I

I I

XA = cos−1(x)

A

B

C

a

b

c

Example S9
a = 94.3288° b = 40° c = 74.7178°

I = sin[(90−40)+74.7178]− sin[74.7178− (90−40)]

2
= 0.201909

I I = sin[(90−40)+74.7178]+ sin[74.7178− (90−40)]

2
= 0.620058

I I I = cos(94.3288)− I =−0.277388

x = −0.277388

0.620058
=−0.447358

A = cos−1(−0.447358) = 180−cos−1(0.447358) = 116.574°
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5 Tycho Example
The algorithms presented in this handbook describe how math was done at Uraniborg
where the domain of application was astronomy. Therefore, it is appropriate to show an
example, carried out by Tycho, in which they were used to solve a problem that he needed
to solve, in this case, to determine the position of Saturn, stated as follows:

Calculation of the position of Saturn from observations at Augsburg at 91
4 hours on the

last day of March in the year 1570.
Distance of Saturn from Spica in Virgo 4°52′

Distance of Saturn from the fifth of the south wing of Virgo [θ Vir] 6°25′

In 1570, Tycho was just 23 years old18 and Uraniborg would not be constructed until
six years later so the data used in this calculation, obtained with a huge, new quadrant19

that he had designed himself, were not as good as he would have eventually. [4, pg. 33]
Still, this example (see Fig. 4) shows the kind of trigonometry he had to do just to make
a single observation. The details were included in his logs. [3, pp. 31–32] The following
pages provide a summary of the calculation.

18These observations were made about 2 1/2 years before Tycho observed the supernova he described in
De Nova Stella.

19Quadrans maximus, with a radius of 5 1/2 meters
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32 1570

«. /longit. 17 49iil ^, , _, / longit. 12° 10.^ Jfl

Ex his locis inveftigatur locus apparens tj in modum fequentem.

A polus Ecclipticae C t)
""^

B 5*« alae ttP D Spica ttP
I. In Triangulo ABC dantur BA 88 15 \ , , ,., / 5^« alae

DA91 59rO"^P^-lat^*-\Spicae
BAD 5 381 differentia longit.

Ergo datur BD 6° 46i diftantia ab inuicem.
II. In eodem triangulo ex datis tribus lateribus invenitur angulus
ABD 123° 25'.

III. In triangulo BCD ex datis itidem tribus lateribus.
BC 6 22 \ diftantia 5**

/ 1,
BD 6 46i/ alae a { Spica
CD 4 48 diftantia f) a Spica. Patefcit angulus CBD 43° 18'.

IV. Subdudto angulo CBD ab angulo ABD relinquitur angulus ABC 80° 7'.

V. In triangulo ABC ex duobus lateribus angulum datum ambientibus inno-
tefcit latus reliquum CA 87 91 compl: lat: t)

.

VI. In triangulo ABC ex datis denique tribus lateribus datur angulus BAC
6° 19' 40", addendus longitudini 5'* alae ttP et ponitur

t) Longit. 18° 30' SL, Latit. 2° 50i B.
Refoluto iam calculo examinis ergo redeunt eaedem ferme diftantiae t)

"' a
Spica et 5*" alae ttp obferuatae.

[Latitudo debet eBe ad fummum 2 48i Boreal.]^
Deinde^ in globo magno dudla linea redla a Spica in ftellam dextri humeri

Bootis, cujus fuit Longit. 26 50 SL, Lat. 48 40 B. ex abaco ftellarum, et ex ea di-
ftantia tj "' a Spica fubdudla colligitur t) Longit. 18 31 Jl Lat. 2 49 B. Quod cum
priori t) loco fere convenit.
Denique eadem vefpera diftabat tertia in mer. ala ttP a t) 14° 15' in eadem

latitudine. Hujus longit. 4 9 il. latit. 2 491 B. Addita igitur diftantia t) huic
longitudini provenit ev TcXdx. Longit. t) 18 26 lTI [quod non multum difcrepat
fed de diftantia obferuata non fum fatis certus. Si poneres diftantiam 3* in ala
et t) 14 20 redle conveniret] ^.

Supputatio pro invenienda cp t^
«>» apparentis cum limplici O ex primo ejus

loco dato. H. 9 M. 15 Simplex ©»« 18 32iV
Longit. I^ 18 30^11

Differentia 2i cui tempus congruit M. 45 fubtrah. in
motibus 2 circiter. Ergo cP t) cum fimplici 0"« fuit Menfis Martij die 31 H. 81
in 18° 30' 35" II [Vide poft vnum folium vbi hinc ex globo exadtius limitavi tam
quo ad longitudinem quam ad latitudinem. Noftra praecef. 27° 49' 45"]*.
Ad tempus <f> colliguntur ex tabulis Prutenicis '.

1 In margine: »Manu Tychonis recentiori«.
2 In margine: «Longimontaniw.
^ In margine adfcriptum eft: »ManuTychonis inferta pofterius*.
* In margine : »Manu Tychonis recentius addita«.
^ In margine: »Longimontani«.

Figure 4: Finding the Position of Saturn
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Table 1: Ecliptic Coordinates at this Time
(with true values appended)

Tycho True
Longitude Latitude Longitude Latitude

Spica 197°49′10′′ −1°59′00′′ 197°46′40.8′′ −2°3′35.5′′

θ Vir 192°10′20′′ 1°45′00′′ 192°8′9.8′′ 1°50′32.9′′

Saturn ? ? 198°30′53.4′′ 2°47′41.9′′

From these positions,20 the apparent position of Saturn is determined as follows:

In the figure shown, A = pole of the Ecliptic, B = θ Vir, C = Saturn and D = Spica.

I. In 4ABC [ABD], are given ÙB A = 88°15′, ÙD A = 91°59′ (latitude complements) and
∠B AD = 5°38′40′′[5°38′50′′] (longitude difference).
Therefore, separation ÙBD = 6°46′20′′[6°46′08′′].

II. In the same triangle, given three sides, is found ∠ABD = 123°25′[123°27′].

III. Likewise, from three sides given in 4BC D, we have the following separations:

ÙBC (Saturn from θ Vir) = 6°22′[6°25′ observed]ÙBD (Spica from θ Vir) = 6°46′20′′

ÙC D (Saturn from Spica)= 4°48′[4°52′ observed]

Clearly, ∠C BD = 43°18′. [using observed separations]

IV. Subtracting ∠C BD from ∠ABD gives ∠ABC = 80°7′.

V. In 4ABC , from two surrounding sides, the given angle determines the remaining side,ÙC A = 87°9′45′′[87°9′41′′], the complement of the latitude of Saturn.

VI. Finally, in 4ABC , from three given sides, we get ∠B AC = 6°19′40′′[6°19′43′′]. Adding
this to the longitude of θ Vir,21 the position of Saturn is found to be
longitude = 198°30′, latitude = 2°50′15′′[2°50′19′′].

I have determined from this calculation that Saturn is almost the same distance from
Spica and θ Vir as was observed. (Its latitude must be at most 2°48′30′′ N.22)

20Note: 17 49 1/6 a [Libra] = 6×30°+17° 49 1/6′
21At this time, Saturn was east of θ Vir.
22later, marginal notation by Tycho
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