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For deeds do die, however nobly done,

And thoughts of men do as themselves decay,
But wise words taught in numbers for to run,
Recorded by the Muses, live for ay.

—E. Spenser [1591]



PREFACE

When atextbook may cost as much as your weekly groceries and software packages often
retail for more than athousand dollars, you might wonder about any computer program that is
given away for free. Doesit do anything useful? Is it any good? And, if it is, then why is it
free?

Regress+ (“Regress plus’) is a software tool for developing univariate mathematica
models. These models may be either equations or distributions. As an added bonus, the
software will generate files of random variates from a large selection of distributions.
Compared to commercia satistica packages, Regress+ has a relatively limited repertoire.
However, in some ways, it isnot only superior to those packages but, indeed, unique in both
the richness of its functionality and its advanced methodology.

This program and its documentation are the product of severa years of experiment and
refinement. Originaly, it was created because | needed it. Later, it was found to be useful to
many others and so it evolved to its present phenotype. To the greatest practicable extent, no
effort has been spared to make it as accurate and robust as it could reasonably be. No corners
have been cut and nothing avoidable has been left to chance. Within its domain, Regress+ can
be trusted to do exactly what it saysit can do. What that is has been explained in detail in the
accompanying documentation.

There are several reasons why this package isfree. First, given the amount of time | spent
onit, and given the hourly rate that are charged to clients for my services, there was no hope
that my share of any sales would ever come close to the break-even point. Shareware was a
possibility, but that usually just makes the user feel guilty when he/she does not send in the
fee. Finaly, as a scientist and expatriate from the world of academia, my motivations were
partly due to pedagogical urgesthat never seem to ebb with the recurring tides of experience.

Nothing in Regress+ is novel. No great discoveries were made during its development.
Nevertheless, even though it does not advance the state-of-the-art, it is my sincere hope that it
will help to advance the practice of the art.

Please email any commentsto the author:

mpmcl@mitre.org

Michagl P. McLaughlin
McLean, VA
October, 1999
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“...thevery game...”

amagic drink and cursed her neighbors' livestock so that they became mad? Did she

not wander about the town pestering people with her recipes for medicines? Yet, in
gpite of such proofs, his filid devotion did not go unrewarded and, with the aid of a good
lawyer plus the support of hisfriend and patron Rudolph I, Emperor of the Romans, King of
Germany, Hungary, Bohemia, &c., Archduke of Austria, &c., the old woman made her fina
exit with less flamboyance than some of His Holy Imperia Majesty’s subjects might have
wished. However, thisis not about the mother but the son—and Mars. Johannes Kepler is
remembered, to this day, for his insight and his vision. Even more than his contemporary,
Galileo, heis honored not just for what he saw but because he invented a new way of looking.

I I IS mother was awitch (or so they said). Had she not poisoned the glazier's wife with

In astronomy, as in most disciplines, how you look determines what you see and, here,
Kepler had anovel approach. He began with data whereas dl of his predecessors had begun
with circles. The Aristotelian/Ptolemaic syllogism decreed that perfect motion was circular.
Heavenly bodies were perfect. Therefore, they moved in circles, however many it took to save
appearances.

It took alot. When, more than a quarter of a century before Kepler, Nicolaus Copernicus
finaly laid down his compass, he had, quite rightly, placed the Sun in the center of the
remaining seven known bodies but he had also increased the number of celestia circles to a
record forty-eight!

Kepler commenced his intellectual journey along the same path. Indeed, in those days, it
wasthe only path. After many false starts, however, he realized that a collection of circles just
would not work. It was the wrong model; the data demanded something else. Kepler bowed
to Nature and, without apology, substituted ellipses for circles. He was the first scientist to
subjugate theory to observation in away that we would recognize and applaud.

Of course, Kepler wasin aunique position. Thanks to Tycho Brahe, he had the best data
in the world and he was duly impressed. Still, he could have voted the party line and added yet
more circles. Sooner or later, he would have accumulated enough parameters to satisfy every
significant figure of every measurement. But it waswrong and it was the wrongness of it that
impressed Kepler most of al. Although he drew hisinspiration from the ancient Pythagoreans
and the religious fervor of hisown time, hiswords leave little doubt of his sincerity:

“...Now, as God the maker played,
he taught the game to Nature
whom he created in hisimage:
taught her the very game
which he played himsdlf...”

Kepler searched through the data and found the game. He learned the rules and showed
that, if you played well enough, sometimes even emperors take notice. Today, our motivation
isdifferent but the game goes on. We begin, of course, with data.



DATA

There are two kinds of data: measurements and opinions. This discussion will focus
exclusvely on the former. In fact, athough there are useful exceptions in many disciplines,
here we shall discuss only quantitative measurements. Adopting this mild constraint provides
two enormous advantages. The first is the advantage of being able to speak very precisealy,
yielding minimal concessions to the vagaries of language. The second is the opportunity to
utilize the power of mathematics and, especially, of statistics.

Statistics, albeit adisciplinein its own right, is primarily an ever-improving cumulation of
mathematical tools for extracting information from data. It is information, not data, that leads
ultimately to understanding. Whenever you make measurements, perform experiments, or
simply observe the Universe in action, you are collecting data. However, real data always
leave something to be desired. Thereisan openinterval of quality stretching from worthless to
perfect and, somewhere in between, will be your numbers, your data. Information, on the
other hand, is not permitted the luxury of imperfection. It is necessarily correct, by definition.
Data are dirty; information is golden.

To examine data, therefore, is to sift the silt of ariverbed in search of gold. Of course,
there might not be any gold but, if there is, it will take some knowledge and considerable skill
to find it and separate it from everything else. Not only must you know what gold looks like,
but you also have to know what sorts of things masgquerade as gold. Whatever the task, you
will need to know the properties of what you seek and what you wish to avoid, the chemistry
of gold and not-gold. It isthrough these properties one can be separated from the other.

An example of real dataisshownin Table1 and Figure 1.1 This dataset consists of values
for the duration of daytime (sunrise to sunset) at Boston, Massachusetts over three years. The
first day of each month has been tabulated along with the longest and shortest days occurring
during this period. Daytime has been rounded off to the nearest minute.

What can be said about data such asthese? It can be safely assumed that they are correct to
the precision indicated. Infact, Kepler's data, for analogous measurements, were much more
precise. Itisaso clear that, a this location, the length of the day varies quite a bit during the
year. Thisis not what one would observe near the Equator but Boston is a long way from
tropical climes. Figure 1 discloses that daytimeis almost perfectly repetitive from year to year,
being long in the (Northern hemisphere) Summer and short in the Winter.

Such qualitative remarks, however, are scarcely sufficient. Any dataset as rich as this one
deserves to be further quantified in some way and, moreover, will have to be if the god is to
gain some sort of genuine understanding. With scientific data, proof of understanding implies
the capability to make accurate predictions. Qualitative conclusions are, therefore, inadequate.

Quantitative understanding starts with a set of well-defined metrics. There are severa such
metrics that may be used to summarize/characterize any set of N numbers, y;, such as these

daytime values. The most common is the total-sum-of-squares, TSS, defined in Equation 1.

1 seefile Examples.Daytimein [FAM95]



Table 1. Daytime—Boston, Massachusetts (1995-1997)

Daytime (min.) Day Date
545 1 1 Jan 1995
595 32
669 60
758 91
839 121
901 152
915 172 21 Jun 1995
912 182
867 213
784 244
700 274
616 305
555 335
540 356 22 Dec 1995
544 366 1 Jan 1996
595 397
671 426
760 457
840 487
902 518
915 538 21 Jun 1996
912 548
865 579
782 610
698 640
614 671
554 701
540 721 21 Dec 1996
545 732 1 Jan 1997
597 763
671 791
760 822
839 852
902 883
915 903 21 Jun 1997
912 913
865 944
783 975
699 1005
615 1036
554 1066
540 1086 21 Dec 1997
545 1097 1 Jan 1998
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Figure 1. Raw Daytime Data
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Total-sum-of-squares = TSS = 2|y, —y)2 1.

i=1

where y isthe average value of y.

TSS is a positive number summarizing how much the y-values vary about their average
(mean). Thefact that each x (day) is paired with a unique y (daytime) is completely ignored.
By discounting this important relationship, even avery large dataset may be characterized by a
single number, i.e., by a statistic. The average amount of TSS attributable to each point
(Equation 2) is known asthe variance of the variable, y. Lastly, the square-root of the variance
isthe standard deviation, another important statistic.

Mz

Varianceofy = Var(y) = £ 2 (y,~y)° 2.

" N

1

In Figure 1, the y-values come from a continuum but the x-values do not. More often, x is
acontinuous variable, sampled at points chosen by the observer. For this reason, it is caled
the independent variable. The dependent variable, y, describes measurements made at chosen
values of x and isamost always inaccurate to some degree. Since the x-values are selected in
advance by the observer, they are most often assumed to be known exactly. Obvioudly, this
cannot betrue if x is area number but, usually, uncertainties in x are negligible compared to
uncertaintiesiny. When thisis not true, some very subtle complications arise.



Table 2 lists data from a recent astrophysics experiment, with measurement uncertainties
explicitly recorded.2 These data come from observations, made in 1996-1997, of comet Hale-
Bopp asit approached the Sun [RAU97]. Here, the independent variable is the distance of the
comet from the Sun. The unit is AU, the average distance (approximately) of the Earth from
the Sun. The dependent variable is the rate of production of cyanide, CN, a decomposition
product of hydrogen cyanide, HCN, with units of molecules per second divided by 1025.
Thus, even when Hale-Bopp was well beyond the orbit of Jupiter (5.2 AU), it was producing

cyanide at arate of (6 £ 3) x 1025 molecules per second, that is, nearly 2.6 kg/s.

Table 2. Rate of Production of CN in Comet Hale-Bopp

Rate Distance from Sun Uncertainty in Rate
(molecules per second)/1025 (AU) (molecules per second)/1025

130 2.9 40
190 3.1 70
90 3.3 20
60 4.0 20
20 4.6 10
11 5.0 6
6 6.8 3

In this example, the uncertaintiesin the measurements (Table 2, column 3) are a significant
fraction of the observations themselves. Establishing the value of the uncertainty for each data
point and assessing the net effect of uncertainties are crucia steps in any analysis. Had
Kepler's data been as poor as the data available to Copernicus, his name would be known only
to historians.

The data of Table 2 are presented graphically in Figure 2. For each point, the length of the
error bar indicates the uncertainty3 in y. These uncertainties vary considerably and with some
regularity. Here, as often happens with observations made by eectronic instruments which
measure a physical quantity proportional to the target variable, the uncertainty in an observation
tends to increase with the magnitude of the observed value.

Qualitatively, these data suggest the hypothesis that the comet produced more and more CN
asit got closer to the Sun. Thiswould make sense since al chemica reactions go faster as the
temperature increases. On the other hand, the observed rate a 2.9 AU seems too small. Did
the comet smply start running out of HCN? How likely isit that the rate at 3.1 AU was redly
bigger thantherate at 2.9 AU? Arethese values correct? Are the uncertainties correct? If the
uncertainties are correct, what does this say about the validity of the hypothesis? All of these
are legitimate questions.

2 seefile Examples:Hale Bopp.CN.in

3 In spite of its name, this bar does not indicate error. If it did, the error could be readily
removed.
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Figure 2. Hale-Bopp CN Data

Finally, consider the very “unscientific” data shown in Figure 3. Thisfigureisaplot of the
highest major-league baseball batting averages in the United States, for the years 1901-1997,
as afunction of time.4

A player’s batting average is the fraction of his “officid at-bats’ in which he hit safely.
Thus, it varies continuously from zero to one. It is fairly clear that there is a large difference
between these data and those shown in Figure 1. The latter look like something from a math
textbook. One gets the feeling that a daytime vaue could be predicted rather well from the
values of itstwo nearest neighbors. Thereis no such feeling regarding the datain Figure 3. At
best, it might be said that batting champions did better before World War 11 than afterwards.
However, thisis not an impressive conclusion given nearly a hundred data points.

Considering the datain Figure 3, there can be little doubt that maximum batting average is
not really afunction of time. Indeed, it is not a function of anything. It is arandom variable
and its values are cdled random variates, a term signifying no pretense whatever that any of
these values are individually predictable® When discussing random (stochastic) variables,
the terms “independent” and “dependent” have no relevance and are not used, nor are scatter
plots such as Figure 3 ever drawn except to illustrate that they are almost meaningless.

4 seefiles Examples. BattingAvgEg.in and Examples. BattingAvg.in [FAM98]
> Thequdlification is crucia; it makes random data comprehensible.
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Figure 3. Annual Best Baseball Batting Average

Variables appear random for one of two reasons. Either they are inherently unpredictable,
in principle, or they smply appear so to an observer who happens to be missing some vita
information that would render them deterministic (non-random). Although deterministic
processes are understandably of primary interest, random variables are actualy the more
common simply because that is the nature of the Universe. In fact, as the next section will
describe in detail, understanding random variables is an essential prerequisite for understanding
any real dataset.

Making sense of randomness is not the paradox it seems. Some of the metricsthat apply to
determinigtic variables apply equaly well to random variables. For instance, the mean and
variance (or standard deviation) of these batting averages could be computed just as easily as
with the daytime values in Example 1. A computer would not care where the numbers came
from. No surprise then that statistical methodology may be profitably applied in both cases.
Even random data have a story to tell.

Which brings us back to the point of this discussion. We have data; we seek insight and
understanding. How do we go from one to the other? What’ s the connection?

The answer to this question was Kepler's most important discovery. Data are connected to
understanding by amodel. When the data are quantitative, the mode is a mathematical model,
in which case, not only does the form of the model lead directly to understanding but one may
guery the model to gain further information and insight.

But, first, one must have a model.



FROM DATA TO MODEL

Marshall McLuhan is widely recognized for his oft-quoted aphorism, “The medium is the
message.” It is certainly true in the present context. The modd is the medium between data
and understanding and it is, as well, the message of this tutorial. The current section presents
an outline of fundamental concepts essential for initiating the first step, from data to model.
The methodology for implementing these concepts is described in later sections. The second
step, from model to understanding, will be left as an exercise for the reader.

As can be seen, through the examples above, data are not transparent. They do not reved
their secrets to casual observers. Yet, when acquired with due diligence, they contain useful
information. The operative word is “contain.” Data and information are not equivalent even
though, in colloquial speech, they are treated as such.

Why not? What isthere in adataset that is not information? The answer iserror.

Data = Information + Error

Wereit not for error, every observation would be accurate, every experiment a paragon of
perfection, and nearly every high school Science Fair project afast track to the Nobel Prize.
Alas, error exists. It existsnot just in every dataset but in every data point in every dataset. It
contaminates everything it touches and it touches everything. To make any progress, it must
beidentified and filtered out.

A good model doesthis very nicely. In its simplest, most superficial aspect, a modd is a
filter designed to separate data into these two components. A mathematical model is a statistical
filter that not only attempts the separation but also quantifiesits successin that effort.

Two Ways to Construct a Model

To construct amodel, it is necessary to proceed from the known to the unknown or, a the
very least, from the better known to the less well known. There are two approaches. The
choi ce depends upon whether it isthe information or the error that is better known, bearing in
mind that “known” and “assumed” are not synonyms. In the first case, the model is designed
to utilize the known properties of the embedded information to extract the latter and leave the
error behind. This approach is commonly employed with stochastic data.  Alternatively, if the
error is the better known, the moded is designed to operate on the error, filtering it out and
leaving the information behind. This approach is nearly universal with deterministic data. In
either case, the separation will be imperfect and the information still abit erroneous.

The notion of deterministic information is commonplace and requires no further elaboration
but what about the putative “ stochastic information” contained in a dataset of random variables?
Isitrea? Likewise, can anything useful be said about error? Do random variables and error
really have “properties’ that one can understand? In other words, are they comprehensible?

They areindeed. The remainder of this section elucidates some properties of i) stochastic
information and ii) error. Such properties are quantitative, leading directly to the identification
of optimization criteriawhich are crucial to any modeling process.

8



Stochastic Information

Stochastic. Information. The juxtaposition seems amost oxymoronic. If something is
stochastic (random), does that not imply the absence of information? Can accurate conclusions
really be induced from random variables?

WEéll, yes, asamatter of fact. That avariableis stochastic signifies only that its next value
is unpredictable, no matter how much one might know about its history. The data shown in
Figure 3 are stochastic in this sense. If you knew the maximum batting average for every year
except 1950, that <till would not be enough information to tell you the correct value for the
missing year. Infact, no amount of ancillary data would be sufficient. This quality is, for dl
practical purposes, the quintessence of randomness.

Y et, we have avery practica purpose here. We want to assert something definitive about
stochastic information. We want to construct models for randomness.

Such models are feasible.  Although future values for a random variable are unpredictable
in principle, their collective behavior isnot. Were it missing from Figure 3, the maximum
batting average for 1950 could not be computed using any algorithm. However, suggested
values could be considered and assessed with respect to their probability. For instance, one
could state with confidence that the missing value is probably not less than 0.200 or greater
than 0.500. One could be quite definite about the improbability of an infinite number of
candidate values because any large collection of random variates will exhibit consistency in
gpite of the randomness of individual variates. It is a matter of experience that the Universe is
consistent even when it is random.

A mathematicd moded for randomness is expressed as a probability density function
(PDF). The easest way to understand a PDF is to consider the process of computing a
weighted average. For example, what is the expectation (average value) resulting from tossing
apair of ordinary diceif prime totals are discounted? There are six possible outcomes but they
are not equally probable. Therefore, to get the correct answer, one must caculate the
weighted average instead of just adding up the six values and dividing the total by six. This
requires a set of weights, as shown in Table 3.

Table 3. Weights for Non-prime Totals for Two Dice

Vdue Weight
4 3/21
6 521
8 521
9 4/21
10 321
12 1/21

The random total, y, has an expected value, denoted <y> or ¥ , given by Equation 3.



Expectationof y = (y) = g W, Y, 3.

The true expectation, 7.62, is quite different from the unweighted average, 8.17.

The set of weights in Table 3 constitutes a discrete PDF, meaning that there are a
countable number of possible values, each with its own weight (density). Given a discrete
PDF, f(y), for the random variable, y, any arbitrary function of y, g(y), will have an
expectation computed as shown in Equation 4. Equation 3isjust aspecial case of Equation 4.

(av) = 2. 1(v) 9v) by 4.

where Ay is equal to the binwidth, defined below in Example S1.

In the continuous case, neighboring values are separated by the infinitesmal binwidth, dy.
Nevertheless, a continuous PDF has exactly the same meaning as a discrete PDF and, thus, the
continuous analogue of Equation 4 is Equation 5.

(o)) = | 1) o) o 5.
For example, supposef(y) = ey andy = 0. Then, the expectation of g(y) =vY is
N — 4T
<N>—Leyydy_2 6.

The product (f(y) Ay) or (f(y) dy) equals the probability of a given y. Probability is a
dimensionless quantity. That is, it isapure number with no units. Consequently, the units of
a PDF must always be the reciprocal of the units, if any, of y.6 It isfor this reason that the
function f(y) isreferred to as a“density” function.

Example S1—Batting Averages

The dataset shown in Figure 3 will be the first example. The collective behavior of these
data can be summarized numerically and graphically. For instance, their mean (expectation) is
0.367 and their variance is 0.0005596 [st. dev. = 0.0237]. Any satistics textbook will list
severa additional metrics that could be used to characterize this set of 97 values. For a
graphical depiction, the device most commonly employed is the histogram, constructed by
grouping the variates into numerical intervals of equal width and plotting these bins against
their frequencies, the number of variates in the respective bins. These frequencies may be
converted to probabilities (normalized) by dividing each by the sample size and then converted
to probability densities by further dividing by the binwidth (here, 0.011). When dl of thisis
done with the batting-average data, we get the histogram shown in Figure 4 (gray boxes).

6 auseful check for complicated density formulas (see Appendix A)
10
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Figure 4. Batting-Average Data (Histogram and PDF)

The overall shape of ahistogram isintended to describe how redlizable values of a random
variable are scattered across the infinite landscape of conceivable locations. The way it works
isthat the histogram is constructed to have atotal area = 1. Therefore, the probability that any
random variate falls in a given bin is equal to the area of the corresponding rectangle. This
scattering of values/probabilitiesis referred to asthe distribution of the random variable. Note
that the Y -axis measures probability density, not probability. Given the computational process
just outlined, and recalling Equations 4 and 5, measurements along this axis have units of 1/u,
where u isthe unit of the random variable (e.g., inches, grams, €tc.)

A continuous density function for these data is aso shown in Figure 4 (solid line). The
corresponding andytica expression, given in Equation 7, is called the Gumbel distribution.”
Like the histogram, the total area under this curve, including the tails (not shown), equals 1.

A5 oo|-eof 7] 7-

where, for this example, A = 0.3555 and B = 0.01984.

-1
PDF = B &XP

7 seepg. A-49
11



We see that Equation 7 does have the proper units. Parameter A has the same units as the
random variable, y. Since any exponent is necessarily dimensionless, parameter B must have
the same units as well. Hence, the entire expression has units of 1/u. Of course, these
particular data happen to be dimensionless already, but variates described by a PDF usualy do
have units of some sort.

The Gumbel distribution is one example of a continuous distribution. [There are many
others described in Appendix A.] If f(y) is the PDF, the probability of any value of y would
equal f(y)*dy which, since dy isvanishingly small, is zero. Indeed, intuition demands that the
probability of randomly picking any given vaue from a continuum must be zero. However,
the probability of picking avaluein afiniterange [a, b] may be greater than zero (Equation 8).

Prob(asysb) :Lbf(y)dy 8.

Theintegra (or sum) of adensity function, from minusinfinity to some chosen value, vy, is
referred to as the cumulative distribution function (CDF), usualy denoted F(y).8 For this
example, it is plotted in Figure 5. In this figure, the solid line is the theoretica CDF and the
gray line the empiricd CDF. The CDF-axis gives the probability that a randomly selected
variate will be lessthan or equal to b (Equation 9).

Prob(ysb)=F(b)=f_:f(y)dy 9.

Some of the reasons for choosing the Gumbel distribution for these data are discussed in its
entry in Appendix A. For now, it is sufficient to appreciate that any sort of “theoretica”
expression would be considered relevant.  This supports the conclusion that useful statements
can be made about stochastic data. However, it does not explain where these parameter values
came from. They are another matter entirely.

One of the reasons for using the values of A and B given above isthat they produce a curve
that encloses an area with approximately the same shape and size as the empirical histogram.
There are much better reasons but their explication requires some preliminary concepts.

Thefirst isthelikelihood of adataset. The term means just what it says. It indicates how
“likely” this set of observations would be had they been selected randomly from the given
PDF. If the variates are independent, the likelihood is aso a measure of their joint
probability.® For any PDF, f(y), the likelihood of a sample of N variates is defined by
Equation 10.

N
Likelihood = I!:Ilf (i) 10.

8 Theterm “distribution” is sometimes taken to mean the cumulative distribution.

9 Two random quantities, x and xx, are independent if and only if their joint (simultaneous)
probability, Prob(x AND xx), is always equal to Prob(x)* Prob(xx).
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CDF

Figure 5. Batting-Average Data (CDF)

The second concept is that of maximum likelihood (ML). Thisnotionisalso very intuitive.
Given aform for the density function, the ML parameters are those parameters which make the
likelihood as large as possible. In other words, any other set of parameters would make the
observed dataset less likely to have been observed. Since the dataset was observed, the ML
parameters are generally considered to be optimal .10 However, this does not preclude the use
of some alternate criterion should circumstances warrant.

The values given above for A and B arethe ML parameters. Thisis an excellent reason for
choosing them to represent the dataand it is no coincidence that the theoretical curve in Figure
4 matches the histogram so well. Had there been a thousand data points, with proportionately
narrower histogram bins, the match would have been even better.

Thus, a Gumbel distribution, with these ML parameters, is a moded for the data shown in
Figure 3. It summarizes and characterizes the stochastic information contained in these data.
Not only does it describe the probability density of the data, but one could query the model.
One could ask the same questions of the model that could be asked of the data. For example,
“What are the average and standard deviation of these data?’ or “What is the probability that
next year's batting champion will have a batting average within five percent of the historica

10 Their uniquenessis usually taken for granted.
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mean?’ The answers to such questions may be computed from the model without looking &
the data at all.

For instance, the last question is answered in Equation 11.7

1.05* mean
Probability = f :

0.95* mean

—

y)dy = F(0.385)—F(0.349) = 0.55 11.

Asacheck, note that Equation 11 predicts that 53 of the values in Figure 3 are within the
givenrange. The data show 52 in thisrange.

One could even ask questions of the model that one could not ask of the data. For instance,
“What is the probability that next year’s batting champion will have a batting average greater
than the maximum in the dataset (0.424)?" Obvioudly, there is no such number in the historical
dataand that suggests an answer of zero. However, thisis clearly incorrect. Sooner or later,
someone is bound to beat 0.424 provided that major-league baseball continues to be played.

It is easy to pose atheoretical question like thisto amodel and, if the model is good, to
obtain acorrect answer. Thismodel (Equation 7) gives an answer of three percent, suggesting
that we are already overdue for such afeat.

Whether or not amodel isgood (valid) isaquestion yet to be addressed.
Example S2—Rolling Dice

The Gumbel distribution was chosen to model the batting-average data because it is known
to be appropriate, in many cases, for samples of continuous-distribution maxima (so-called
record values). However, thereisno a priori guaranteethat it is vaid for these particular data.
Occasiondly, there is enough known about some type of stochastic information that theory
aloneis sufficient to specify one distribution to the exclusion of al others and, perhaps, even
specify the parametersaswell. The second stochastic example illustrates this situation via the
following experiment.

Step 1

Think of a number, awhole number, from oneto six.
Step 2

Roll astandard, cubical die repeatedly until your chosen number appears three times.
Step 3

Record the number of rolls, Ny, required.

After only afew semesters of advanced mathematics courses, it would be relatively easy to
prove that the random variable, N, is ~NegativeBinomia(1/6, 3).11 This assertion could be
tested by performing the experiment avery large number of times and comparing the theoretical
distribution to the empirical data

11 seepg. A-81; the~isread “(is) distributed as”
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Carrying out this exercise by hand would be a bit tedious. Fortunately, it isa simple matter
to simulate the experiment on a computer. Such simulations are very common. Simulated

results for a 1,000-fold repetition of this experiment are shown in Figure 6.12

0.06

—

PDF
|
|

Figure 6. Rolls3 Data (Histogram and PDF)

The NegativeBinomia model shown in Figure 6 (solid lines) is another example of a
discrete PDF. Typicaly, this means that the random variable can take on only integer values.
That isthe case here since N, is a count of the number of rolls required.

In computing the model shown, the first parameter was not fixed at its theoretica value,
1/6. Instead, it was estimated from the data. The ML estimate = 0.1691, very close to the
theoretical 0.1667. It would have been even closer had the sample size been much larger than
1,000. Likewise, the mean predicted by this model = 17.74, very close to the theoretical
mean, 18. The second parameter, 3, was assumed given athough it, too, could have been
considered unknown and estimated from the data.

The observed data (gray histogram) may be compared to the estimated, ML model using the
Chi-square statistic, defined in Equation 12.

12 seefile Examples:Rolls3.in
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Chi—square = x? = 12.

where k includes all possible values of the random variable and where 0 and e are the observed
and expected frequencies, respectively.

For this example, Chi-square = 65.235. Again, the question of whether this amount of
discrepancy between theory and experiment is * acceptable” is amatter to be discussed below.

Example S3—Normality

We would be remissin our illustrations of stochastic information were we to omit the most
famous of al stochastic models, the Normal (Gaussian) distribution. The Normal distribution
isacontinuous distribution and it arises naturally as a result of the Central Limit Theorem. In
plain English, this theorem states that, provided they exist, averages (means) of any random
variable or combination of random variablestend to be ~Normal (A, B), where A is the sample
mean and B is the unbiased estimate of the population standard deviation. As usual, with
random data, the phrase “tend to” indicates that the validity of this Gaussian model for random
means increases as the sample size increases.

In Example S2, a thousand experiments were tabulated and individua outcomes recorded.
A samplesize of 1,000 is certainly large enough to illustrate the Central Limit Theorem. Our
fina example will, therefore, be a 1,000-fold replication of Example S2, with one alteration.
Instead of recording 1,000 values of N, for each replicate, only their average, Nayg, Will be
recorded. This new experiment will thus provide 1,000 averages!3 which, according to the
Central Limit Theorem, should be normally distributed.

Asbefore, the experiment was carried out in smulation. The observed results and the ML
model are shown in Figure 7. The estimated values for A and B are 17.991 and 0.2926,
respectively. With a Gaussian model, the ML parameter estimates may be computed directly
from the data so one cannot ask how well they match the observed values.

A somewhat better test of the model would be to pick a statistic not formally included in the
analytical form of the distribution. One such statistic is the interquartile range, that is, the range
included by the middle half of the sorted data. In this example, the model predicts a range of
[17.79, 18.19]14 while the data show arange of [17.81, 18.19].

Theideal test would be one that was independent of the exact form of the density function.
For continuous distributions, the most common such test is the Kolmogorov-Smirnov (K-S)
statistic. The K-S datistic is computed by comparing the empirical CDF to the theoretical
CDF. For example S3, these two are shown in Figure 8. The K-S datistic is smply the
magnitude (absolute value) of the maximum discrepancy between the two, measured along the
CDF-axis. Here, the K-S statistic = 0.0220.

13 seefile Examples: Rolls3avg.in
14 seepg. A-85
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Figure 8. Rolls3avg Data (CDF)
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Once again, the question naturally arises as to whether this result is acceptable and, once
again, we defer the question until later.

Stochastic Information—Summary

In examples S1 to S3, we have endeavored to show that the term “stochastic information”
is not the contradiction it would appear to be. It should now be clear that random variables are
collectively, if not individually, predictable to a useful extent and that much can be said, with
accuracy, about such variables.

Since much can be said, it follows that it should be possible to use this information to filter
out some of the error found in stochastic data. Just because variates are random, it does not
mean that they are errorless. The data of Example S1, for instance, appeared to be described
by a Gumbel distribution. However, as with dl stochastic datasets, there were discrepancies
between moddl and data. How much of this was due to inherent variation and how much was
dueto error was not discussed. It will be.

Finally, we have described three metrics: the ML criterion, the Chi-square statistic, and the
K-S statistic. These three are valid and useful concepts for the description of stochastic data
and it will soon become evident that all may be utilized as optimization criteriaas well.

First, however, we discuss deterministic information and the kinds of error commonly
associated with it.
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Deterministic Information and Error

If “stochastic information” seems an oxymoron, “deterministic information” would, for
similar reasons, appear to be atautology. Neither istrue and, in this discussion, the latter term
will refer to any information gleaned from non-stochastic sources, typicaly experimentation.
Since these sources are prone to error, it is essential to characterize that error in order to attempt
to compensate for it. This section will focus on the kinds of errors found in deterministic data.

The amount of error in adataset, or even a data point, is generally unknown. The reason,
of course, isthat error islargely random. We have just seen, however, that randomness does
not imply total ignorance. To the contrary, modeling of deterministic data usually assumes that
something valid is known about the error component of the data, providing a handle with
which tofilter it out. Infact, whenever data of a given type are investigated over an extended
period of time, it is not uncommon for associated errors to become as well characterized as the
information itself.

However, for the purposes of thistutorial, our goals are much less specific. We shall limit
our illustrations to afew kinds of error and say something, aswell, about error in general. As
in the last section, we seek quantitative metrics that may be employed as optimization criteria.

Components of Error

Empirica datasets, amost without exception, are contaminated with error. Even the data
shown in Table 1, which few would dispute, are recorded with limited precision. Therefore,
they are subject, a the very least, to quantization error. A dataset without error might be
imagined but hardly ever demonstrated.

Not only does a dataset, as a whole, contain an unknown amount of error but every data
point in it contains some unknown fraction of that total error. Consequently, the amount of
information in a dataset is unknown as well. Each data point makes some contribution to the
total amount of information but there isno way to tell how much just by looking. Information
and error have the same units and may be physically indistinguishable.

Error comprises some combination of bias and noise. A biasisasystematic deviation from
the truth due either to a deterministic deviation, consistently applied, or to a random deviation
with anon-zero mean. The former is seen, for instance, when your bathroom scale is not
properly zeroed in. In this case, it will report your apparent weight as too high or too low,
depending on the sign of the biasin the zero-point. The latter type of bias is exemplified in the
case of an astronomer who records the image of a distant galaxy by counting the photons that
impinge on the pixels of a light-sengitive array. Inevitably, each pixd is subject to a counting
error. Such errors are typically random variables ~Poisson(A) and have amean, A > 0.15

Noise refers either to random, zero-mean errors or to the residua portion of random,
biased errors once the bias has been removed. For example, undergraduate chemistry
students, performing their first quantitative, organic analysis usualy get experimental results
exhibiting lots of errors. These errors are largely random but often have a significant negative

15 seepg. A-101
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bias because, in trying to isolate the target substance, some is lost. Quantifying the remainder
isaprocess usually subject to zero-mean, random errors, i.e., noise.

Most often, total error represents the combined effect of severa sources of different kinds
of error, including biases which can sometimes be identified and removed, as well as noise.
To the degree that error israndom, only its average effects can be characterized and there is, of
course, no guarantee that a given sample will be average.

As before, we shall eschew theoretical discussionsin favor of concrete examples. There is
ample literature available to anyone wishing to pursue this subject in depth. The examples
below al relate to deterministic data.

Example D1—Quantization Error

The daytimesin Table 1 provide an illustration of one kind of error and, a the same time,
of the utility of the variance.

One of the most useful properties of the variance datistic is its additivity. Whenever any
given variance, V, is due to the combined effect of k independent sources of variation, V will
equal the sum of theindividual variances of these k sources. [Note the recursive nature of this

property.]

The variance of the daytimes listed in Table 1 = TSS/N = 836,510/43 = 19,453.72 min2.
As noted above, a portion of this variance derives from the fact that these values, having been
rounded to the nearest minute, have limited precision. This round-off error has nothing to do
with the mechanism responsible for the secular variation in daytime. Hence, the variance due
to rounding (quantization) isindependent of all remaining variance, so it can be factored out.

It is easy to demonstrate that quantization error is a random variable ~Uniform[-B, B],
where B is one-half the unit of quantization.16 As such, the variance due to this single source
of error, Q, is given by Equation 13. For these data, the unit of quantization is one minute.
Therefore, Q = 0.08 min2, only 0.0004 percent of the total variance of the data.

( unit of quanti zation)2

Quantizationvariance = Q = 12 13.

Continually citing squared quantities (with squared units) is inconvenient and the standard
deviation is quoted more often than isthe variance. Unfortunately, standard deviations are not
additive. Inthisexample, the “standard deviation of quantization error” is 0.29 min (about 17
seconds). Thus, athough this quantization error is negligible compared to the overall variation
of the data, it is clearly not negligible when compared to the recorded precision.

If quantization were the only source of error for this dataset, the deterministic information
present would constitute 99.9996 percent of the observed variance. It would then be |&ft to the
chosen model to “explain” thisinformation. Note that a deterministic model is not expected to

16 seepg. A-113

20



explain error. That task is delegated to a separate error model, implicitly specified as part of the
optimization procedure.

Finaly, the variance statistic is evidently useful not just for computational purposes but, as
seen here, as a measure of information. In other words, were the errorless component of the
total variance equal to zero, there would be nothing to explain. In Example D2, we uitilize this
aspect of the variance to devel op a quantitative metric for deterministic information explained.

Example D2—Kepler’'s First Law

In adeterministic model, the value of the independent variable is supposed to be sufficient
to predict the value of the dependent variable to an accuracy matching that of the input. If the
model is important enough, it is often referred to as alaw. The implied reverence generally
signifiesthat something of unusua significance has been discovered about the real world and
summarized in the model so designated. Today, in the physical sciences, laws are particularly
precise, as are their parameters. In fields related to physics, for instance, it is not uncommon
to find mode parameters accurate to more than nine significant figures (i.e.,, one part per
billion). This mathematical approach to understanding we owe, in large part, to the efforts of
Johannes Kepler (1571-1630) and Galileo Galilel (1564-1642).

This example was presented by Kepler as an illustration of hisFirst Law, arguably the first
correct mathematical modd correctly devised. The law states that each planet revolves about
the Sun in an elipse with the Sun at one focus.

Figure 9 depicts an ellipse, together with some of its more important features. Like any
ellipse, its size and shape may be completely specified by two numbers. Usually, one of these
isthe length of the semi-major axis, OP, and the other is the eccentricity, which is the ratio of
two lengths, OS/OP. The dlipse in the figure has an eccentricity of 0.5 so one focus, S, is
halfway between the center, O, and the circumference a P; the other focus, not shown, is the
mirror image of S through the center.

Kepler spent much of hislife investigating the orbit of Mars. This orbit has an eccentricity
of only 0.09, so it is much more circular than the ellipse shown in Figure 9 as, indeed, are the
orbits of al planetsin the Solar System, except Mercury and Pluto. The point P represents the
point closest to the Sun, S, and is called perihelion; the point farthest from the Sun, A, is caled
aphelion. A chord, SG, drawn through a focus and paralel to the semi-minor axis, OR, is
called the semi-latus rectum. The latter, plus the eccentricity, are the only parameters required
when an dlipseis described in polar coordinates (Equation 14).

e A
radius = T+ Bcos(v) 14.

wheretheoriginisat S, from which the radius (e.g., SM) is measured, and where the angle,
v, measured from perihelion in the direction of motion, is called the true anomaly.

In Equation 14, parameter A isthe length of the semi-latus rectum and B is the eccentricity.
This equation is actually agenera equation describing al of the conic sections—circle, elipse,
parabola, or hyperbola, depending upon the eccentricity (see Table 4). The independent
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variable is true anomaly, from which the dependent variable, the heliocentric radius, may be
computed/predicted if the model is valid.

Figure 9. Ellipse (eccentricity = 0.5)

Table 4. Eccentricities of Conic Sections

Eccentricity Shape

0 Circle
0,1 Ellipse
1 Parabola
>1 Hyperbola

With these preliminaries, we may now examine Kepler's data, shown in Table 5 in modern
units, along with the actual values for the times indicated [KEPO9, STA97].17

17 seefiles Examples:Kepler_Mars.in and Examples: True_Mars.in Note that these datado
not comprise asingle Martian year; they were observed during a sequence of oppositions.
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Table 5. Orbital Data for Mars

Time Radius (AU) True Anomaly (radians)
(JD - Kepler Predicted Actud Kepler Actud
2300000)18
—789.86 1.58852 1.58853 1.58910 2.13027 2.12831
—757.18 1.62104 1.62100 1.62165 2.39837 2.39653
—753.19 1.62443 1.62443 1.62509 2.43037 2.42854
—726.27 1.64421 1.64423 1.64491 2.64327 2.64152
-30.95 1.64907 1.64907 1.64984 2.70815 2.70696
2.84 1.66210 1.66210 1.66288 2.96844 2.96732
13.74 1.66400 1.66396 1.66473 3.05176 3.05065
49.91 1.66170 1.66171 1.66241 3.32781 3.32675
734.17 1.66232 1.66233 1.66356 3.30693 3.30640
772.03 1.64737 1.64738 1.64812 3.59867 3.59818
777.95 1.64382 1.64383 1.64456 3.64488 3.64440
819.86 1.61027 1.61028 1.61083 3.97910 3.97865
1507.15 1.61000 1.61000 1.61059 3.98145 3.98157
1542.94 1.57141 1.57141 1.57186 4.28018 4.28035
1544.97 1.56900 1.56900 1.56944 4.29762 4.29779
1565.94 1.54326 1.54327 1.54210 4.48063 4.48083
2303.05 1.47891 1.47889 1.47886 4.94472 4.94565
2326.98 1.44981 1.44981 1.44969 5.18070 5.18169
2330.96 1.44526 1.44525 1.44512 5.22084 5.22184
2348.90 1.42608 1.42608 1.42589 5.40487 5.40591
3103.05 1.38376 1.38377 1.38332 6.12878 6.13067
3134.98 1.38463 1.38467 1.38431 0.198457 0.200358
3141.90 1.38682 1.38677 1.38643 0.274599 0.276497
3176.80 1.40697 1.40694 1.40676 0.653406 0.655260
3891.17 1.43222 1.43225 1.43206 0.940685 0.943206
3930.98 1.47890 1.47888 1.47896 1.33840 1.34079
3937.97 1.48773 1.48776 1.48789 1.40552 1.40788
3982.80 1.54539 1.54541 1.54583 1.81763 1.81986

Since Kepler intended these data to be illustrative of his law of ellipses, it is reasonable to
ask whether they are, in fact, described by the model of Equation 14. The graph in Figure 10,
where X istrue anomaly and Y is radius, makes it qualitatively apparent that they are.19

This assessment may be quantified by hypothesizing that the information explained by
this model and the residual error constitute independent sources of variation. If this is true,
then the total variance of the dataset is the sum of the variances for each of these components

18 JD (Julian date) = interval, in days, from Greenwich noon, 1 January 4713 B.C.

19 Theé€lipse, in this (optimized) model, has A = 1.51043 AU and B = 0.0926388.
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and it would then be a triviad matter to compare the fraction of the variance/information
explained by this model to the tota variance in the dataset. A good mode is one that leaves
relatively little unexplained.

1.67 5
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Figure 10. Kepler's Data and Model

Since the number of pointsis constant throughout this example, we may substitute sums of
squares for the respective variances. The information not explained by the model, plus the
variance due to any errors, is then equa to the error-sum-of-squares, ESS, often cdled the
residual-sum-of-squares, defined in Equation 15.

N
Error-sum-of-squares = ESS = _Zl (yi _yi)2 15.

where y isthe value predicted by the model.

Therefore, the fraction of the total variance in the dataset that is explained by a given mode
isequal to the statistic R-squared, defined in Equation 16.

X - 1_ESS
R-squared TSS 16.
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Kepler'sdata, plus the predictions of the optimum model (Table 5, column 3), produce the
following results (computed to six significant figures):

TSS = 0.273586 AUz
ESS = 1.257e-08 AU2
R-squared = 1.00000

In other words, by this statistic/criterion, the model described in Equation 14 and Figure 10
explainsal of the deterministic information contained in Kepler’s dataset to a precision of one
part in 100,000.

Thisresult is not quite perfection. Since ESS > 0, there remains something, true deviations
or error, yet to be explained.20 Also, the 28 radii listed by Kepler are not really as accurate as
hisvaluesindicate. Nevertheless, this degree of successisimpressive. There are thousands of
sociologists, psychologists, and economists who would be more than delighted with results of
such precision.

We shall seelater how Kepler's model was optimized to find parameters yielding this value
for R-squared.

Example D3—World Track Records

Asa measure of information and/or error, the variance statistic reigns supreme in most of
contemporary analysis of deterministic data. However, intuition suggests that the “best”
deterministic modd is the one that minimizes the average deviation, defined in Equation 17.
When graphed, this model gives the curve that is as close as possible to al of the data points
simultaneoudly, using a statistic with the same units as the dependent variable.

N
Average Deviation = %_Z ‘yi_yi‘ 17.

where ¥ isthe value predicted by the model.

To illustrate this metric, consider the datain Table 6.21 This table lists 14 distances for
which world track records (for men) are recognized. The corresponding average speed attained
during each record runislisted aswell [YOU97]. Thetask isto model this speed as a function
of distance.

Not surprisingly, the average speed decreases sharply, at first, but then seems to leve off
somewhat. Many analytical formswould be suitable but we shall examine the power law given
in Equation 18 (wherey is speed and x is distance).

y =Ax8+C 18.

20 That this“something” isrelatively small does not imply that it is spurious or insignificant.
21 gseefile Examples Track.in
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Table 6. World Track Records (Men)

Speed (m s-1) Distance (m)
10.152 100
10.173 200
9.240 400
7.864 800
7.565 1,000
7.233 1,500
7.172 1,609.344 (mile)
6.947 2,000
6.740 3,000
6.449 5,000
6.236 10,000
5.855 20,000
5.636 25,000
5.598 30,000

The model of this form with the minimum average deviation has the parameter values given
below. Itsgraph isshown in Figure 11.

A = 1835
B = -0.2380
C = 4.020

The value of the average deviation resulting from this model is 0.163 meters per second,
the worst deviation is —0.954 meters per second (point #2). According to the R-squared
metric, thismodel explains 94.691 percent of the total information in the dataset.

Had we, instead, used the R-squared criterion to optimize the model, we would then have
obtained the following parameters:

A = 20.36
B = -0.2369
C = 3785

The latter model would have explained 96.634 percent of the information in the dataset but
with an average deviation of 0.203 meters per second and a worst deviation of —0.582 meters
per second (point #2). Evidently, just as there is more than one conceivable model for these
data, there is a so more than one way to optimize that model.

The minimum deviation is often used with data thought to contain one or more outliers,
data points with unusually large deviations from the putative model. Minimizing the average
deviation is more robust than minimizing ESS, signifying, among other things, that the
computed model is not as sendtive to the presence of extreme values as it is when agpparent
deviations are squared. The literature on robust estimation is quite large and several good
techniques have been developed over the years.
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Figure 11. World Track Records
Deter ministic Information—Summary

In this section, we have described two metrics for deterministic modeling, giving different
answers. Isthe choice amatter of indifference or is one better than the other?

To anyone trying to understand the real world, there can be only one “best” answer because
thereis only one Universe. Nature does not use one set of rules on weekdays and another on
weekends. To be credible, a model must eschew arbitrariness to the greatest extent possible.
Moreover, it must be completely consistent with whatever is aready known about the data it
describes, including even aspects of the data that are not the subject of the model.

Asnoted earlier, any deterministic model should be optimized utilizing whatever is known
about the errorsin the data. In Examples D2 and D3, this concern was not addressed. So far,
we have considered only the fraction of information explained and average deviation (error),
without considering specific properties of the residua variance. Finally, in discussing these
two models, we did not relate much of what we said about stochastic modeling, especidly the
powerful concept of maximum likelihood, to the fact that errorsin data are largely random.

In the next section we shall put everything together. Our efforts will be rewarded with a set
of valid, intuitive, and well-defined criteriafor computing optimum model parameters.
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FINDING OPTIMUM PARAMETERS

Data, as we have seen, come in two varieties: stochastic and deterministic. Each of these
may be modeled and that model characterized by one of anumber of metrics (statistics) relating
something about the quality of the model. Quality implies descriptive or explanatory power,
proof of which is manifested in predictive capability. All of this presupposes, of course, that
models exhibiting these desiderata can actually be found.

This section clarifies some rel ationships among the five metrics described earlier. In doing
S0, a general technique for finding optimum parameters will be cited. It will be apparent that
this technique may be readily implemented as a computational algorithm.
Five Criteria

The five metricg/dtatistics that we shall utilize as modeling criteriaarelisted in Table 7. The
two primary criteriaare shown in bold and their preeminence will be discussed.

Table 7. Modeling Criteria

Criterion Applicability
Maximum likelihood All random variates
Minimum K-S statistic Continuous random variates
Minimum chi-square statistic Discrete random variates
Minimum ESS (least squares) Deterministic data
Minimum average deviation Deterministic data

Some of the reasons why these five are desirable criteria were described in the last section.
It was taken for granted there that, given an appropriate anaytical form for the model, finding
parameters that would optimize the chosen metric was practicable. Indeed, most of the values
for model parameters given in the text areillustrative.

The methodology described here takes a modeling criterion as a kind of meta-parameter.
Partid judtification for this approach derives from the fact that these five criteria are more
interrelated than they might appear. In particular, as first demonstrated by Carl Friedrich
Gauss (1777-1855) and Adrien Marie Legendre (1752-1833), there are deep, fundamental
connectionslinking the criteria for stochastic and deterministic modeling. These relationships
are due to the randomness of error.

Maximum Likelihood Redux

In the course of any description of modeling and statistics, it is easy to get lost in the almost
inevitable deluge of symbology and equations and, in the confusion, lose sight of the original
objective. One is dealing, presumably, with real data from the real world. Thus, a modd is
not just some computational gimmick for reproducing a matrix of numbers. A good mode
says something genuine about the Universe. Itsanalytical form is discovered, not invented; its
parameters are properties of Nature, not the whim of an analyst.
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The ML criterion acknowledges this role, as well as the supremacy of data, in the most
direct fashion. Given the form for a stochastic model, ML parameters maximize the probability
that the observed data came from a parent population described by the model. Deterministic
modeling, on the other hand, attempts to maximize the explanatory power of the modd or,
occasionaly, to minimize the average deviation. It turns out that there is a profound connection
between least squares (also, minimum deviation) and maximum likelihood.

We shall start with least squares. Thisis undoubtedly the most widely used of all modeling
criteria. Itisusually presented smply as atechnique for generating a curve that is closest to dl
of the data points. Of course, it isn’t. The minimum-deviation criterion is the one that yields
that particular curve. Aswe have seen, the least-squares technique actually minimizes the error
variance and, hence, maximizes the fraction of information that is explained by the model. If
it did nothing else, one could hardly complain. However, it does much more.

In red life, errors are dmost never smple manifestations of a single mechanism. Nearly
aways, thetotal error in an observation isthe net effect of several different errors. As a result,
the Central Limit Theorem takes over and stipulates that such errors have a strong tendency to
be ~Normal (A, B). Thistheorem wasillustrated in Example S3.

In devising a deterministic model, suppose that this theorem and the proliferation of error
modes are taken at face value. Then one might ask, “What set of parameter values maximizes
the likelihood of the residualsif they are normally distributed? Also, isthisvector unique?’

Thus, assume that the residuals for the data points, €, = y, -V, , are ~Normal (A, By). In
addition, assume that these residuals are al unbiased so that Ay is aways zero. Then, the
likelihood is given by Equation 19 (cf. Eq. 10 and pg. A-85).
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Equation 19 can be simplified. The log() function is monotonic, so any set of parameters
that maximizes log(likelihood) will necessarily maximize the likelihood. Taking (natural) logs
of both sides of Equation 19 produces Equation 20.

. . _ N 1 N Sk 2
Log-likelihood = —kzllog(Bku T[)—é > () 0.

Given a set of measurement errors, the first term in Equation 20 is a constant and has no
bearing on the maximization. The likelihood will be a maximum if and only if the expression
in Implication 21 isaminimum.

Maximum likelihood [0 min

e

If the errorsfor al of the points come from the same normal distribution, then al By are equal
and, after canceling the units, this constant can be factored out giving Implication 22.
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However, the term on the far right isjust ESS! 1n other words,

if all errors are ~Normal(0, B), then the parameters
that minimize ESS are the very same parameters that
maximize the likelihood of the residuals.

It turns out that this vector of parameters is amost always unique. The least-squares
parameters have many other useful properties aswell but these lie beyond our present scope.

While thisisawonderful result, it fals short of perfection for at least two reasons. First,
the fact that the parameters are the ML parameters says nothing about the anaytica form of the
model. If the model itself isinappropriate, its parameter values are academic. Second, there is
no guarantee that the errors are independent or normally distributed. These hypotheses must be
proven for the least-squares method to yield the ML parameters.

However, the strong assumption that all By are equal is unnecessary provided that their
true values are known. Minimizing Implication 21, instead of Implication 22, is referred
to as the weighted |east-squares technique.22

Finally, what about the minimum-deviation criterion? Can that be related to the maximum-
likelihood function as well?

Yes, it can. The second most common distribution for experimental errors is the Laplace
distribution (see pg. A-63). Substituting the Laplace density for the Normal density, the
derivation above produces Implication 23 instead of Implication 21.

N ‘Yk_yk‘
2

Maximum likelihood [0 min B
k

23.

Implication 23 is equivalent to minimizing the (weighted) average deviation, analogous to
weighted least squares. Of course, the same caveats apply here asin the case of normal errors.

Alternate Criteria

The two criteria that do not relate directly to maximum likelihood are the minimum K-S
criterion and the minimum chi-square criterion. Nevertheless, the first of these is judtified
because it isthe most common goodness-of-fit test for continuous random variates, as well as
one of the most powerful. The chi-square criterion is the discrete counterpart of the K-S
criterion and any discussion of discrete variates would be very incomplete without it.

22 Some texts discuss only the latter since setting all By equal to one is always a possibility.
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From thispoint on, we shall take it as given that the criteria listed in Table 7 are not only
valid and appropriate but, in many respects, optimal. The next task is, therefore, to compute
the parameters that realize the selected criterion.

Searching for Optima

As noted earlier, a single computational technique will suffice regardless of the selected
criterion. All optimizations of this sort are essentially a search in a multidimensional parameter
gpace for values which optimize the objective function specified by this criterion. There are
many generic algorithms from which to choose. One of the most robust is the simplex method
of Nelder and Mead.23

The simplex agorithm traverses the parameter space and locates the local optimum nearest
the starting point. Depending upon the complexity of the parameter space, which increases
rapidly with dimensiondlity, this loca optimum may or may not be the global optimum
sought. It is, as aways, up to the anayst to confirm that the computer output is, in fact, the
desired solution.

The simplex isa common agorithm and source codeis readily available [CAC84, PRE92].
Summary

Three of the five modeling criteria described in the first section have been shown to be
closely linked to the concept of maximum likelihood. Consequently, they are eminently
suitable as modeling criteria. They are intuitive, valid, and appropriate. Moreover, they almost
always provide unique parameter vectors for any model with which they are employed.

Two other criteriawere also listed. Both of these are best known as goodness-of-fit criteria
for random variates with respect to some putative population density. However, they may aso
be employed to determine the parameters for this density, not just to test the final result.

The simplex agorithm will prove suitable, in al cases, to compute parameters satisfying
the chosen criterion in any modeling task that we shall address. The truth of this assertion has
not yet been demonstrated but it will become evident in the sections to follow. Some of the
figures shown above provide examples.

To this point, we have seen, or & least stated, how models may be specified, optimized,
and computed. The stage is now set to evaluate the results of any such endeavor. We shall
discussthe quality of modelsin general and of their parameters in particular. |s the model any
good? Are the parameters credible? Does the combination of modd and parameters make
sense in the light of what we know about this experiment and about the Universe in generd?
In other words, are we doing real science/engineering/anaysis or are we just playing with data?

23 not to be confused with the linear programming technique of the same name
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ISTHE MODEL ANY GOOD?

The “goodness’ of a mode depends not on how well it might serve our purposes but on
the degree to which it tells the truth. Beauty, in this case, is not entirely in the eye of the
beholder. If a modd is based upon observed data, especially physica data about the red
world, then the moddl must be equally real. Severa criteria have been established, in earlier
sections, that measure the validity (i.e., thereality) of a model. In this section, we shall focus
mainly on the statistical dimension of thisreality; the physical dimension is beyond our scope.

Deterministic data and stochastic data will be treated separately because the former case is
very easy but the latter is not. However, as we have seen, it is the modeling of error as a
random variable that lends credence to the aforementioned deterministic criteria.  Thus, the
validity of stochastic modelsis fundamental to the validity of modeling in general.

In this section, we encounter a new technique—the bootstrap. The bootstrap may be
parametric or nonparametric. Inthe discussionsto follow, both forms will be employed. The
utility of these techniques should be self-evident.

The Bootstrap

Since there is ample literature on bootstrap methodology [EFR93], the descriptions here
will be somewhat abbreviated. While the name is fairly new, some of what is now termed
“bootstrap” methodology is not. In particular, the parametric bootstrap includes much that was
formerly considered simply a kind of Monte Carlo smulation. However, the nonparametric
bootstrap, outlined in the next section, is quite recent.

The bootstrap technique was designed, primarily, to establish confidence intervals for a
given datistic. A confidence interval is a contiguous range of values within which the “true”’
value of the statistic will be found with some predetermined probability. Thus, the two-sided,
95-percent confidence interval for agiven K-S statistic isthat range of vaues within which the
true K-S statistic will be found in 95 percent of al samples drawn from the given population,
being found 2.5 percent of the time in each tail outside the interval. Other things being equal,
the width of thisinterval decreases with increasing sample size.

Sometimes, a confidence interval may be computed from theory alone. For instance,
means of large, random samplestend to be unbiased and normally distributed. Therefore, the

95-percent confidence interval for any such meanisjust i + 1.96 SE, where u is the observed
mean and SE isthe standard error of the mean, given by Equation 24.

SE = % 24,

where o is the population standard deviation for the dataand N is the sample size.

As an example, consider again the data exhibited in Figure 7. Theory says that these 1,000
means should, themselves, have an (unbiased) mean of 18 and a standard deviation (SE) of

0.30. Hence, 95 percent of them should lie in the interval 18 £ 1.96*0.30 = [17.41, 18.59],
with the remaining five percent divided equally between the two tails. In fact, if you sort the
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file Examples:Rolls3avg.in, you will find that these 1,000 means exhibit a 95-percent centra
confidence interva of [17.40, 18.55]. The latter interval is, of course, just a sample of size
one of all smilar confidence intervalsfor smilar data. Assuch, it is expected to deviate alittle
bit from theory. If you sense alittle recursion going on here, you are quite right.

What we have just done, without saying so, was a form of parametric bootstrap. The file
of 1,000 means was obtained by simulating the origina experiment 1,000 times. Each tria
was terminated when an event with a probability of 1/6 was redlized 3 times. The smulation
used these two parameters to synthesize 1,000 bootstrap samples, each sample containing
1,000 trials, with only the sample mean recorded. The explicit use of input parameters makes
this a parametric bootstrap.

Figures 7 and 8, and the accompanying discussion, illustrate not only the Central Limit
Theorem but also the validity of the bootstrap technique. This technique has received a great
deal of scrutiny over the past decade, with very positive results. We shall put it to good use.
Almost al of our remaining discussion will derive from the now well-established fact that

bootstrap samples are valid samples.

Whether they are created from theory (parametric bootstrap) or experiment (nonparametric
bootstrap), bootstrap samples constitute additional data. These data may be characterized by
one or more statistics and the ensuing distribution of these statistics utilized to estimate any
desired confidence intervals. By comparing optimum values, for any model, to the confidence
intervals for these values, the probability of the former may be estimated. In this section, this
probability will be related to goodness-of-fit; in the following section, it will be employed to
estimate parameter uncertainty.

Stochastic Models

Table 7 listed three criteria for optimizing a stochastic model. Unlike their deterministic
counterparts, none of these criteriaare self-explanatory. In genera, it is not easy to tell, from
the value of the given statistic, whether or not that vaue is probable under the hypothesis that
the optimum modé isvalid.

For example, the K-S datistic for the best-fit Gumbel distribution to the Batting-Average
data is 0.057892. This number represents the maximum (unsigned) discrepancy between the
theoretical and empirical CDFs. So much is very clear. What is not at dl clear, however, is
whether or not a random sample (N = 97) from a genuine population described by
the same distribution would be likely to exhibit a K-S statistic having the same value. It
could be that the value 0.057892 is too large to be credible.

How could you tell? The traditional approach would be to look up atable of K-S critica
points in a reference and compare the observed value to some table entry. The problem with
this approach isthat nearly all such tableslist asymptotic results, i.e., with N = Infinity. Even
those that have entries for specific sample sizes are not always appropriate in every case. There
might be hidden dependencies on model form or parameters that could invalidate the recorded
critical points. Idedlly, what onewould redly like is a made-to-order table, conditioned on the
sample size, the modd form, and the model parameters. Before the advent of fast digita
computers, such atable was arare luxury. Today, itisfairly easy.
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To construct such a customized table, we start with the putative parent population. In this
case, we start with the Gumbel distribution given in Equation 25.

g 0.3555—y
PDF = 501984 eXp( 001084 | &P

0.3555—y)

‘eXp( 0.01984 25

From this distribution, which purports to be a good description of our data, draw a random
sample (N = 97) a very large number of times (at least 1,000 times). With each of these
samples, carry out the same operations that were performed on the original data.
Here, we assume that each sample is ~Gumbel (A, B) and we optimize the model, for each
sample, using our original criterion. When al of this is done, we have a vector of 1,000
bootstrapped K-S statistics, dl of which a) genuinely reflect our candidate population, by
construction, and b) were obtained exactly aswas the origina K-S statistic.

There are now several ways to proceed but, here, we shall adopt the smplest approach.

First, sort the 1,000 bootstrapped statistics in ascending order. The result will ook much like
the histogram in Figure 12 (where Y = K-S statistic).
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Figure 12. Distribution of K-S Statistic from Equation 25
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The bootstrapped K-S satidtic is, itself, a random variable and we could try to modd it.
Since each of these continuous variates represents the maximum of 2 x 97 comparisons,24 they
might even be ~Gumbel (A, B)!2> However, we shall instead use just the raw values. It turns
out that our observed value of K-S is found in the 41st percentile of this specific K-S
distribution. In other words, if you draw a sample (N = 97) from the distribution given by
Equation 25, model it as ~Gumbel (A, B), and recompute the optimum A and B using the ML
criterion then, 59 percent of the time, the K-S statistic you will get will be larger (wor se) than
the one we obtained with the Batting-Average data.

It is customary to require the 95th percentile before rgecting an hypothesis which means
that we cannot regect the null hypothesis that our data are modeled by Eq. 25. While not
rejecting an hypothesisisnot quite the same thing as accepting it, in practice, this is the usual
interpretation. Therefore, we conclude that

according to the K-S test, Eq. 25 is an ACCEPTABLE description of our data.

We could go through the same procedure with the 1,000 Log-likelihood statistics that
resulted from this bootstrap process, assessing the observed vaue in the same fashion. Then,
we would have two measures of acceptability. The prudent course would be to require both of
them to be acceptable before declaring that the mode is good. In this example, the observed
vaue falsin the 47th percentile of its (bootstrapped) distribution so it, too, is acceptable.

With discrete variates, the usual goodness-of-fit datistic is Chi-square.  The same
procedure would apply there aswell. In fact, the bootstrap technique is a very genera method
for assessing goodness-of-fit, no matter what statistic/criterion is used.

Thereisaso a smple rule-of-thumb when using the Chi-square tatistic as described. Its
expected value is equa to the number of degrees of freedom.26 Therefore, if the Chi-square
value found is less than the range of y-values, it will always be acceptable.

Deterministic Models

Since the bootstrap technique is generally valid, it could be used for assessing goodness-
of-fit with deterministic models aswell. However, R-squared, the usual statistic in such cases,
is self-explanatory. Itisequal to the fraction of the variance explained by the model. Thereis
no need to ask about the probability of such avaue with a given dataset/model combination.

The minimum-deviation statistic is not quite as transparent. Still, this statistic has the same
unitsasthe dataand it isusualy easy to tel if a given minimum deviation is small enough for
the intended purposes.

24 Each end of each “step” in the empirical CDF must be examined.

25 |ndeed they are, Gumbel (0.05604, 0.01192) [Fig. 12, solid ling]. In fact, this modd is an
even better fit than it was with the Batting-Average data. See also, Examples: KStest.in.

26 seepg. A-42
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All of the above is true whether the deterministic modeling (regression) is weighted or
unweighted. With weighted regressions, the weighted residuals take the place of the usual
residuals since the former are now normalized with respect to their own standard errors.
However, the goodness-of-fit metrics, and their meaning, remain the same.

Summary

This section has outlined a genera technique for establishing the validity of a mathematical
model. If amode isdeemed acceptable, it signifies that the equation (or density function) may
substitute for the origina data. Moreover, the modd may now be queried, perhaps in ways
that would be impossible with the actual dataset. Deterministic models may likewise be used to
interpolate or extrapolate from the observed values. In short, if a modd is acceptable, it is
equivalent to any and al past (or future) observations.

With stochastic models, acceptability is assessed by comparing one or more goodness-of-
fit gatistics (random variables) to their respective distributions, asking whether the vaue
observed istoo improbable to credit. With deterministic models, the goodness-of-fit statistics
are sufficiently perspicuous that we need not go to so much trouble.

Once again, it must be emphasized that none of this is meant as some kind of mathematical
gimmick. The number of potentiadl models is infinite and, with enough fortitude, any dataset
could be adequately fit to one or more of them. The real god is to find the modd that Nature
uses by examining a sample of observations. The techniques described herein are immensely
powerful but they are blind. The necessary vision must be supplied by the analyst.
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HOW PRECISE ARE THE PARAMETERS?

Our goa has been to show how to obtain a validated mathematical model for any dataset.
Thiswe have done. Yet the story is not quite complete. Certainly, an acceptable model of the
proper form, with optimum, ML parameters cannot be significantly improved but there remain
two loose ends.

Oneloose end is that the procedure described above for determining ML parameters is just
a search of the parameter space for the best parameter vector. In general, there is no guarantee
either that thereis only one best solution or, if thereis, that you will find it. Depending upon
where you start looking, you might converge on alocal optimum instead of the desired global
optimum. Also, the latter might be degenerate, i.e., there could be more than one of them.

For instance, the ML fit of asine wave to the Daytime data (Table 1) is shown in Figure 13
(cf. Figure 1). Thisfit (Eq. 26) has R-squared = 0.99908 so this model is good to one part in
athousand but simple, high-school trigonometry reveals that the phase term, —1.391, may be

incremented by any integer multiple of 21t (360 degrees) without changing the daytime value,
y. Therefore, the number of ML solutionsis actualy infinite.
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Figure 13. Least-squares Sine Fit to Daytime Data

y = 183.3sin ((2 ) 0.002736 x — 1.391) + 728.4 26.
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The other loose end stems from the definition of maximum likelihood. ML parameters are,
by definition, more probable than any others—but how probable isthat? Suppose you propose
to flip acoin 100 times and bet on the outcome. The wise bet would be 50 Heads and 50 Tails
because that is the ML result; every other result is less likely. Suppose, however, that some
bystanders are watching all of thisand decide to bet, amongst themselves, whether or not you
will win your bet. The wise choice in this case would be to bet that you would lose. Even
though, with afair coin, a 50:50 outcome is the most probable, its probability is still less than
eight percent. There are just too many other possibilities for any one of them to be at al likely.
So your chances of losing are, at best, more than 92 percent.

The probability that the ML parameters in a model are equa to the true parameters is even
worse. Unless theory insists that a given parameter must be arational number, then you can be
absolutely certain that the optimum value you found for it will always be incorrect. The
reason, noted earlier, isthat selecting a specific number from the real domain has a probability
of zero. You can never do it exactly.2?

But you can get asclose asyou like. All it takesisalot of effort and avery large sample.

Sampling isthe key. The model for the radius of the orbit of Mars (Table 5, col. 3) as a
function of true anomaly hastwo ML parameters. A = 1.51043 AU and B = 0.0926388. The
Keplerian model is an approximation, abeit a very good one, to the true solution.
Nevertheless, even if we grant that the dliptica approximation is good enough, these two
parameters are not perfect. Were new data found for exactly the same time frame, these
parameters would be different even though the orbit of Mars was constant. Every
dataset is a sample, not the entire population. Therefore, there is aways some sampling error.

Nothing can be done to compensate for degenerate global optima except to examine the ML
parameters for reasonableness. They must make sense!l They must have the correct units and
be consistent with what is known about the real world. This is essential even if the solution is
not degenerate. Likewise, parameter uncertainties due to sampling error, or to deficiencies in
the model, cannot be removed once the ML result has been obtained. However, they can be
estimated.

The purpose of this section is to describe a procedure for estimating parameter uncertainty.
In addition, parameter correlation is also discussed. The latter is a subtle kind of uncertainty
which recognizes that parameters are not necessarily independent. We shall take it as given that
the mode is acceptable since amodel that is not acceptable is of little interest and its parameters
even less so.

To quantify uncertainty, we shall utilize confidence intervals. Every optimum parameter
can be assigned a confidence interval within which the true value of the parameter will be found
with some specified probability. The wider this confidence interval, the more uncertain the
parameter vaue.

27 assuming that you cannot go out and examine every member of the parent population
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Aswe have aready seen, confidence intervals may be estimated via the bootstrap. For this
application, however, the parametric bootstrap is not suitable. We are not asking now about a
theoretical population from which we can select random variates. Rather, we are asking about
one particular dataset, the one that gave rise to the model. Hence, we need a nonparametric
bootstrap that somehow uses this dataset to generate further bootstrap samples. The requisite
methodology is outlined below. As we have done throughout this tutorial, we concentrate on
examplesinstead of theory, first with stochastic models, then with deterministic models.

The Nonparametric Bootstrap

A nonparametric bootstrap sample is created by resampling the original dataset,
with replacement. Imagine that the origina data are in a paper bag. Close your eyes and
select one point/variate from the bag, record its value, then put it back. Repeat this selection
until you have a sample of the same size as the original. Such a sample is nonparametric; it
comes from the actual data, not from a parametric moddl of that data. Reusing the data in this
way might seem like cheating?8 but it is quite valid, aslong as proper corrections are applied.

In the previous section, when we discussed the parametric bootstrap, a smple approach
was used to analyze the bootstrap distributions. For instance, consider the 1,000 K-S statistics
in Figure 12. These 1,000 values constitute an empirica CDF for any K-S satistic computed
for asample (N = 97) that is ~Gumbel (0.3555, 0.01984). To determine a central, 95-percent
confidence interval for K-S, using the per centile method, we throw away the 25 largest and
25 smallest of these 1,000 K-S values. The remaining 0.95*1,000 = 950 values comprise the
desired confidence interval, conditioned on this model and the given sample size. Itsrange is
[0.0401747, 0.0974331]. Its interpretation is that 95 percent of the K-S datistics you would
obtain with agenuine sample (N = 97) from this Gumbel distribution would fall in this range.
Furthermore, 2.5 percent would fall in the range [0, 0.0401747] and the last 2.5 percent in the
range [0.0974331, 1].

Were the model or sample size different, the 95-percent confidence interval would be
different. The confidence interval would also grow or shrink with the need for increased or
decreased confidence, respectively. Thus, the 90-percent confidence interval in this example is
[0.0430050, 0.0901146] and the 99-percent confidence interval is[0.0364837, 0.107393].

With the nonparametric bootstrap, it is better not to use such a simple approach to find a
confidenceinterval. When the origina data are resampled, the resulting bootstrap distribution
isbiased and skewed. The corrections referred to above compensate for these defects. Instead
of using the 25th and 975th elements of the sorted CDF to demarcate the tails of the bootstrap
distribution, the BCa technique specifies dternate indices.2® Once these have been identified,
however, the interpretation of the confidence interval remains the same.

We shall now illustrate the use of these nonparametric confidence intervals to determine the
precision (confidence) that we may ascribe to the ML parameters of any mode.

28 or, at least, “pulling oneself up by one’ s bootstraps”
29 Computing the latter is well understood but rather complicated [see Technical Details].
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Stochastic Models

Repeat the following procedure 50 times:

Step 1

Let X and Y be random Cartesian coordinates ~Normal (0, 3).
Step 2

Select X and Y, then draw the radius, R, from the origin to the point (X, Y).
Step 3

Record the length of R.

At the end of this experiment, we have a sample of 50 values for R.30 Although we shall
not proveit, theory saysthat R is ~Rayleigh(3) which is the same as ~Chi(3, 2).31 However,
let us pretend that we know that the distribution should be Rayleigh but have forgotten how to
compute the theoretical scale parameter, A. Instead, we shall just determine the ML parameter
for aRayleigh(A) mode (Equation 27), based upon this small sample.

_y 1(Y)?
POF = - exp (—2 (A) ) 27.

Theresult (see Figure 14, with Y representing R) is quite acceptable, but with A = 2.847
instead of 3. What happened? Did we make a mistake? |s the theory wrong? Was our
pseudo-random number generator faulty?

The answer is D, none of the above. Our 50 variates are just one sample out of an infinite
number of similar samples that this experiment could have produced. It is extremely unlikely
that the ML parameter of the ~Rayleigh mode for any such sample would equal the theoretical
prediction to four significant figures. Had the sample size been 1,000,000,000, then perhaps
four significant figures might have been anticipated, but not with N = 50.

We can be certain of this because, using 2,000 nonparametric bootstrap samples, we find
that the estimated 90-percent central confidence interval for A is [2.648, 3.062]. Since even
this somewhat conservative (narrow) confidence interval includes the value 3,

we cannot reject the null hypothesis that A = 3.

Given the manner in which the 50 radii were created, they necessarily constitute a genuine
sample (N = 50), ~Rayleigh(3). The confidence interval given above, therefore, reflects the
intrinsic variability of this parameter. Were another sample of 50 radii constructed, its ML
parameter would be different from that found for the first sample but the confidence interval
would be much the same. The variability of confidence intervals decreases as the number of
bootstrap samplesincreases. A set of 1,000 bootstrap samplesisthe minimum for experiments
such as these.

30 seefile Examples:Radii50.in
31 seepg. A-21
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Figure 14. ML Fit of 50 Radii to a Chi Distribution

If we repeat this experiment with 5,000 nonparametric bootstrap samples instead of 2,000,
in order to achieve greater accuracy, we obtain the following results for parameter A:

90% --> [2.649, 3.072]
95% --> [2.597, 3.138]
99% --> [2.507, 3.264]

At the same time, the corresponding parametric confidence intervals, determined from the
model and the percentile method, instead of by resampling the data and the BCa method, are as
follows:

90% --> [2.527, 3.186]
95% --> [2.460, 3.246]
99% --> [2.327, 3.355]

Findly, it isinteresting to compare our sample of 50 radii to its theoretica distribution. If
weingist that A = 3, we get the theoretical PDF shown in Figure 15 (with Y representing R)
along with the empirical histogram representing the data. Using the ML and K-S criteria
established in the previous section, plus 2,000 parametric bootstrap samples, it turns out that
this fit is likewise acceptable, with likeihood and K-S vaues faling in the 9th and 35th
percentiles, respectively.
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Figure 15. Comparison of 50 Radii to their Theoretical Rayleigh Distribution
Deterministic Models

Consider the dataand model shown in Figure 13 and Equation 26. These daytime values
were modeled with a sine function having four parameters. The vaue of R-squared, 0.99908,
is excellent and we would have no qualms about accepting such afit. Still, by using the least-
sguares technique, we implicitly assumed that the residuas were ~Normal (0, B). We did not
proveit. Now that we know how to assess a distribution of random errors, let us do so.

Table 8 shows again the daytime data of Table 1, along with the daytime vaues predicted
by our supposedly optimum model. A brief glance at either this table or a Figure 13 discloses
that the fit isquite good. Theresidualsarelisted in column 4. The worst one, shown in bold,
is only —7.2 minutes. The parameters given in Equation 26 are obviously very good.
However, they are the ML parameters if and only if we can prove that the vector of residuas
shown hereis~Normal (0, B). Otherwise, as good as the fit is, there are better parameters yet
to be found, perhaps even a better model.

We shall not repeat earlier discussion. As Sherlock Holmes would say, “You know my
methods.” We find that the residuals are best described as ~Normal (0, 4.280). In this case,
the mean was held constant at zero, not estimated from the data. The likelihood and the K-S
satigtics fall in the 49th and 82nd percentile, respectively, based upon 1,000 (parametric)
bootstrap samples. The unbiased, Gaussian nature of these residualsis, therefore, accepted.
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Table 8. Daytime Data, Observed and Modeled

Observed
Daytime (min.)

545
595
669
758
839
901
915
912
867
784
700
616
555
540
544
595
671
760
840
902
915
912
865
782
698
614
554
540
545
597
671
760
839
902
915
912
865
783
699
615
554
540
545

Day

1
32
60
91

121
152
172
182
213
244
274
305
335
356
366
397
426
457
487
518
538

579
610

671
701
721
732
763
791
822
852
883
903
913
944
975
1005
1036
1066
1086
1097
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Modeled
Daytime (est.) Residud
548.7 3.7
591.8 -3.2
664.0 -5.0
760.1 2.1
845.0 6.0
900.7 -0.3
911.7 -3.3
909.2 -2.8
868.6 1.6
789.2 5.2
696.0 —4.0
608.8 -7.2
555.9 0.9
545.1 5.1
548.4 4.4
590.8 —4.2
665.5 -5.5
761.7 1.7
846.3 6.3
901.3 -0.7
911.7 -3.3
908.9 -3.1
867.6 2.6
787.7 5.7
694.4 -3.6
607.6 —6.4
555.3 1.3
545.1 5.1
548.7 3.7
591.9 -5.1
664.0 -7.0
760.1 0.1
845.1 6.1
900.7 -1.3
911.7 -3.3
909.2 -2.8
868.6 3.6
789.1 6.1
695.9 -3.1
608.8 -6.2
555.8 1.8
545.1 5.1
548.4 3.4



In saying this, weimply only that the residuals, collectively, could easily have come from a
zero-mean Normal distribution. “Collectively” signifies that we do not consider the order of
the residuals with respect to each other. If you look carefully a Table 8, column 4, you will
notice a suspicious aternation of positive and negative resduals. Such aperiodicity would not
be observed in a random sample from any Gaussian distribution. It is, rather, a systematic
error inour model. It appearsthat we have not, after al, completely characterized the motions
of the Earth and Sun with this ssimple equation. Kepler could have told us that!

We forego perfection for the moment and take up the matter of uncertainty in the least-
squares parameters. To do this, we shal again require a large number of nonparametric
bootstrap samples. There are two common methods for obtaining such samples. We could
smply resample the data points as we did with the 50 radii of the previous example. However,
it ismore common to use all of the data points and resample the residuals instead. If the latter
are independent (hence, uncorrelated), then any residual might have been found associated with
any data point. Here, there is some small amount of correlation but, for the sake of this
illustration, we shall ignore it and proceed in the usual fashion, using 1,000 bootstrap samples.

Doing so, we obtain simultaneous confidence intervals for all of the parameters, as follows:

A 90% --> [182.247, 184.318] (cf. Eq. 26, page 37)
95% --> [181.944, 184.594]
99% --> [181.354, 184.991]

B 90% -->[0.00273247, 0.00273958]
95% --> [0.00273152, 0.00274036]
99% --> [0.00272935, 0.00274223]

C 90% --> [-1.40549, —1.37757]
95% --> [1.40857, —1.37274]
99% --> [-1.41479, —1.36706]

D 90% --> [727.679, 729.264]
95% --> [727.465, 729.569]
99% --> [727.030, 729.939]

Note that the widths of these intervals, relative to parameter magnitude, are much narrower
(i.e., better) than those seen in the example of the 50 random radii in spite of the fact that the
latter were a genuine sample from a known parent population while the sine model here is
known to be deficient.

It isdifficult to predict the variability of parameters. It was not obvious, for instance, that
the uncertainty in the period of these data would be less than the uncertainty in the amplitude.
Unless confidence intervals can be computed from theory, only a large bootstrap sample will
yield this sort of information.

The interpretation of the confidence intervas is the same with these deterministic data as it
was with the stochastic data in the previous example. Also, the accuracy of the intervals will
improve, ceteris paribus, with bootstrap sample size.
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Parameter Correlation

There is one, fina comment to make concerning confidence intervals and that concerns
their appearance. A confidence interval isjust arange of numbersand it isvery easy to fall into
the trap of believing that dl of the numbers in that range are equaly probable or, if there is
more than one such range for a given model, that any parameter may have any vaue in the
stated range regardless of the values of the other parameters. Neither of these beliefsisvalid.

As an illustration, let us examine the nonparametric bootstrap results for the daytime data
more closely. Given 1,000 bootstrap samples, we may compute the mean of dl the bootstrap
parameters and, also, the covariance matrix.

The means are as follows:

A =183.383

B = 0.00273601
= -1.39028

D =728.435

Note, first of al, that these means are not quite equa to the ML values of the parameters.
Bootstrap distributions are often unsymmetrical, with the mode and mean unequal.

Here isthe upper triangle32 of the covariance matrix, with indices from A to D:

6.82581e-01 2.12136e-08 1.06586e-03  5.41600e-02
8.03571e-12 —-2.29840e-08 4.54181e-07

1.19938e-04 —6.43826e-04

4.14830e-01

Theijth entry in this matrix is given by Equation 28:

Cov (P,) = 0% = <(R—<R>)(Pj—<Pj>)> 28,
where P is a parameter.

When i =j, thisisjust the variance of parameter[j]; wheni # j, it is the covariance. Aswe
have seen before, the variance measures the intrinsic variability of P. The covariance measures
the variability of one parameter with respect to another. Looking a this matrix, we see that
parameter B, the period, has the smallest variance. No matter what the other parameters might
have been, for any of the 1,000 bootstrap samples, the period stayed almost constant.

The sign of the covariance is an indication of the sense of correlation. Covariances that are
positive indicate that the two parameters in question increased and decreased together, on
average. Negative covariances mean that, on average, one parameter increased when the other

32 All covariance matrices are symmetric about the main diagonal.
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decreased. Here, for example, the amplitude of the sine wave, A, is positively correlated with
all of theremaining parameters. However, the phase, C, is negatively correlated with D. To
get an idea of how strong these relationships are, it is, perhaps, best smply to compare the
covariances for any parameter to its own variance. Any statistics textbook will discuss these
mattersin great detail.

In any case, the implications with regard to confidence intervalsis clear:
All combinations of parameters are not equally probable.

Summary

Our goal was to establish a quantitative measure of the variability of model parameters. We
have succeeded by taking advantage of the power of the nonparametric bootstrap. The measure
of variability obtained is a confidence interval which denotes the numerica range wherein the
true value of the parameter is likely to be found with some specified probability. By using
information from the covariance matrix, we gain additiona insight into the manner in which
parameters change with respect to each other when the dataset changes.
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99.9999999999% PERFECT!

The Rydberg constant describes the colors of atoms. For a hypothetical atom of infinite
mass, its limiting value, R, = 109,737.3156864 cm-1, has an accuracy of more than twelve

significant figures[UDE97]. Think about that for a moment.

That' s like measuring the average distance between Earth and the Moon with an error less
than the width of the period at the end of this sentence. Clearly, thisis far beyond our current
technology. How, then, can we measure R, with such perfection?

Kepler, and his eponymous laws of planetary motion are partly responsible. Using the
first and third of these, it is possible to derive the classica expression for the energy of an
electron in an atom. If thisexpression is combined with the laws of Quantum Mechanics (QM)
and its insistence upon the importance of integers, the result is that an atom cannot have just
any color but only alimited (yet still infinite!) set of colors.

Evidence for this conclusion can beillustrated using Hydrogen, the ssmplest atom, with the
simplest set of colors. The primary colors of Hydrogen are listed in Table 9.33

Table 9. Observed Transitions/Colors for Hydrogen (1H1)

Wavelength (in Angstroms)

N 1 2 3 4 5 6
Series| Lyman Bamer Paschen Brackett Pfund Humphries
Ultraviolet Visible Infra-red

1215.67 6562.72 18751.0 40511.6 74578.0 123685.
1025.72 4861.33 12818.1 26251.5 46525.1

972.54 4340.47 10938.1 21655.3

949.74 4101.74 10049.4

937.80 3970.07 9546.0

930.75 3889.05

926.23 3835.38

923.15 3797.90

co~NouhwnZ

The Rydberg constant describes al of these colors via the model given in Equation 29.

Transitionenergy ~ R, 29.

1_1
NF NG

where N, and N, are positive integers and where ~, in this case, means “is proportional to.”

According to the laws of QM, the color, i.e., the wavelength (A) of the light emitted during
any trangition isinversely proportiona to itsenergy. The fina model, based on these laws, is

33 seefile Examples:Rydberg.in [WEAT75]
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given by Equation 30. Fitting the data in Table 9 to Equation 30, the (unweighted) least-
squares value for Ry is 109,708 cm-1.34 The resulting graph is shown in Figure 16, with Y
representing wavelength. To six significant figures, R-squared = 1.00000. When experiments

along these lines are done very carefully, far more than six significant figures can be achieved.
However thisis still not enough to get the reported precision of R.

30.

130 —

Y x 1E-03

0 140

Figure 16. Rydberg Data for Hydrogen

The current accuracy of the Rydberg constant derives not from any single experiment or
insight into the laws of Nature but from the unavoidable requirement that the Universe be
consistent. This consistency must be mirrored in the physical sciences, specificaly in the
many scientific models that have been devel oped over the last four centuries. When all of these
models are considered simultaneously, they must agree.

This requirement is manifested in relationships such as Equation 31.

34 One centimeter = 108 Angstroms.
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_ 2m™me?
RM_T 31.

where m and e are the mass and charge of the electron, respectively, cisthe speed of light, and
his Planck’s constant, the proportionality constant connecting energy to wavel ength.

Equation 30 relates a mass, a charge, the speed of light, and several other constants, to the
observable colors of atoms. One can perform a variety of experiments to determine this mass,
charge, or speed. In every case, there are still more factors, determinable in yet different ways.
Each of these experiments depends upon a model and al of these models interlock. They are
like words in a crossword puzzle. The total solution will break down if even one of them is
incorrect.

The physical sciences, which seek thistotal solution, are not incorrect; they are mature and
reliable. One need only turn on atelevision set or view a CAT scan to appreciate that the laws
of the Universe are very well understood. Except a the frontiers of knowledge, the puzzle dl
holds together. 1t does not break down.

Itis, in part, this internal consistency which affords the degree of accuracy that is seen in
R.. Whenever any physical experiment is performed, it yields a quantitative answer with some
precision. If sufficient attention has been paid to eliminating sources of error, the experiment
will have high precision. When many such experiments are incorporated into a single analysis,
it is possible to compute a vector of means for any quantities, such as those in Equation 30,
that their answers might have in common. Aswe have seen, in Equation 24 for instance, these
means will be more precise than any single experimental result. Simply put, the information
from many experiments necessarily exceeds the information provided by just one of them.

In our efforts at modeling, we have sought to extract information from data. The examples
described hereinillustrate that contemporary methodology is very effective in this task. When
the same methodology is applied to a collection of experiments, it is possible to achieve enough
synergy to eliminate amost al of the residua error. It is possible to obtain 99.9999999999
percent accuracy.

Twelve significant figures do not come about by accident. The techniques described in this
tutorial are just the latest in a heritage that goes al the way back to Kepler and Galileo. That
heritage is one which affirms the primacy of data as well as the power of mathematics and
statistics. These affirmations are implemented in techniques that are based upon the concept of
maximum likelihood, techniquesthat literally construct the best possible match between theory
and experiment, between model and data.

In computing the optimum result, these same techniques explicitly acknowledge the role of
measurement error and sampling error. Even the best measurements are not perfect. Even the
best experiments must examine less than the entire Universe.

Error implies that the models we construct, and their parameters, must always be somewnhat

uncertain, however much we might like to believe otherwise. No model is complete until those
uncertainties have been rigoroudly quantified. A good model knowsits limitations...
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...as does agood tutorial.
We began with data, but where do we end? Perhaps T. S. Eliot had the right idea:

“We shall not cease from exploration
And the end of al our exploring
Will beto arrive where we started
And know the place for the first time.”

And be ready to start again on a new adventure, older and wiser, and better prepared—
to experiment,
to analyze,
to play the game one moretime.
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Users Guide

mathematical modeling available anywhere! Regresst+ (“Regress plus’) is a user-

friendly software tool to facilitate the statistical analysis of quantitative data, construct
(univariate) mathematicd models, and quantify the uncertainties of any mode and its
parametersin arigorous fashion. Models may be deterministic or stochastic, depending upon
the nature of the data. Inthe first case, the modd will be an equation, y = f(X); in the second
case, the model will be adistribution, f(y).

WELCOME to Regress+... and Congratulations on choosing the best software for

Hereisan abbreviated list of what you can expect Regress+ to do:

* Read in some data, written by any application capable of producing atextfile
» Fit these datato any model you select, from alarge menu of choices

* Let you typein your own equation if the one you want is unavailable

* Allow you to choose the optimization criterion

 Consider from one to ten parameters

* Start with your own estimates of the values for these parameters

* Permit you to stipulate that some of these values are definitely correct

* Quantify the goodness-of-fit of the model, using two independent metrics

* Determine confidence intervals, and the covariance matrix, for all parameters
» Generate aplot of the data and model (with one keystroke!)

» Save theresults, including aPICT file of the plot

* Create afile of random variates from any distribution you choose

* Run unattended, if necessary

» Do al of this, even while other applications are running at the same time
Unless you are aready an expert in this field, the chances are that Regress+ will do one

morething. It will teach you more about modeling than you knew before. That’'s a plus, no
matter how your models turn out.



INSTALLATION

This Users' Guide assumes that you already know Macintosh® basics—how to make an
alias, use the Sandard File Dialog, etc.

Aswith everything else in this software package, installation has been designed with ease-
of-use in mind.

1. Drag the Regress+ folder to the folder, on your hard drive, where you keep such
applications.

2. For maximum convenience, make an dias of the Regress+ application and place it on
your desktop so that you can drag-and-drop any input file onto it.

3. If you have not already done so, READ THE TUTORIAL. ThisGuidetells you what
buttons to push and when, but not why.
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USING REGRESS+

There are many options available in Regress+ and it would be tedious just to describe them
one by one. Besides, not many people enjoy reading documentation, so we shall assume that
you have just installed this software, have the data files in the Examples folder, and can't wait
to try them out. Sinceit isthe more familiar, this section will start with deterministic modeling,
ak.a. regression.

This section isintended only to get you started. For al the fine print, consult the Reference
section.

Deterministic Modeling

Before we get too fancy, let’ stake avery simple example, one that you could do even with
acaculator. There is afamous hypothesis in astronomy, known as Bode's Law, which is
supposed to predict the distances of the planets from the Sun. It isn’t actuadly a law, and it
wasn't even discovered by anyone named Bode, but we'll try it anyway.

Bode' sLaw directs that you create a series by starting with zero and three, then doubling
thereafter. By adding four to each of the numbers in this series, then dividing by ten, you get
the independent variable, x, supposedly related to the average planetary distance, y (AU), by
the simplest of linear models (Equation 32). Thisdataset islisted in Table 10 [ABE64].

y =Ax+B 32.

Table 10. Bode's Law of Planetary Distance

Planet N Distance (y) X y (est) Residual
Mercury 0 0.387 0.4 2.659 +2.272
Venus 3 0.723 0.7 2.822 +2.099

Earth 6 1.000 1.0 2.985 +1.985

Mars 12 1.524 1.6 3.312 +1.788
(Ceres) 24 2.767 2.8 3.965 +1.198
Jupiter 48 5.203 5.2 5.272 +0.069
Saturn 96 9.555 10.0 7.884 -1.671
Uranus 192 19.218 19.6 13.110 —6.108
Neptune 384 30.110 38.8 23.561 —6.549 *

Pluto 768 39.545 77.2 44.462 +4.917

Input File

Open the Examples folder and locate the file Bode.in. If you look at this file with any text
editor, you will see that it is just a plain, tab-ddimited ASCII file. The tabs are not required;
they are used for convenience, so that you can open the file with a spreadsheet and the data will
be lined up in columns. The semicolons appearing in the file introduce comments and full-line
comments usually start with a semicolon. Column 1 must be the dependent variable, y, and
column 2 must be the independent variable, X, the same order as in the formulay = f(x). If
there are weights for the dependent variable, then they must be included as athird column. The
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extension .in (case-sengitive) tells Regress+ that thisisan input file. Without this extension, a
textfile will not appear in theinput file dialog.

Drag-and-drop thisinput file onto Regress+ (or its dias) and you will immediately see the
large Setup dialog, shown in Figure 17.35

Regression Model: Poly [10 points]

y = A*R"4+B*R"3 +C*H"2 +D*w + E

Criteria Options Accuracy
@ Least Squares [] Confidence Intervals 25 -
20 -
{2 Minimum Deviation [ List Data 15—
{yMagimum Likelihood [ ] Use Weights 12_-’"}
() K-S Statistic []New Sample(s) =

Cancel " 0K ll

Figure 17. Setup Dialog
Setting up the Model
Let’s go through the itemsin this dialog box.
Thetitle of the dialog indicates that
* thisis aregression model

» the (default) model is apolynomial equation (Poly)
* there are 10 pointsin the input file

35 All screenshots depicted in this Guide were captured using 4-bit grayscale.




The displayed form of Poly is shown in the highlighted box at the top of the dialog. This
model subsumes the one shown in Equation 31 as a speciad case. If A =B = C = 0, then we
areleft with the slope, D, and intercept, E, of a standard linear model. Obvioudly, parameter
labels are arbitrary and D, E will do just asnicely as A, B. Forcing A-C to be zero is trivial, as
we shall soon see.

Just below the model box, there are three columns of Setup variations. With deterministic
modeling, they are asfollows:

*Criteria
Y ou have your choice of two optimization criteria. The most common, by far, is
Least Squares (default). The aternative is Minimum Deviation. Here, as elsawhere,
choices that are ghosted out are either not applicable or impermissible under the
circumstances.

* Options
All Options are OFF by default.
Confidence Intervals (90-, 95-, and 99-percent) apply only to model parameters. List
Datawill generate a second output file, listing the input along with predicted y-values
and residuals (predicted — observed), with an asterisk identifying the worst residual.
Use Weights applies to regressions but is ghosted out in this example since the input
file did not include a (third) column of weights.

» Accuracy
Accuracy is disabled by default.

Accuracy appliesto the bootstrapped confidence intervals. The number of bootstrap
samples equals 200* Accuracy.36

The two buttons, OK and Cancel, have their usual meanings. At times, a button may aso
be ghosted out, for the reasons cited above.

Not al of the Setup choices are in the diaog box. This dialog is also connected to the
Equations menu. This menu lists dl of the built-in regression models. For now, we shall
stick with our linear model.

To get al of the output discussed in this example, check List Data.

Accepting the Setup

After you have chosen the desired model, options, and (if appropriate) Accuracy, click the
OK button (or hit Return or Enter). The Setup dialog will be replaced by the Parameter dialog.
In this example, it will look like Figure 18.37

36 unless the bootstrap phase is Canceled prematurely

37 1f the model has fewer than five parameters, there will be fewer entriesin thelist.
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Starting Parameters

y = A*H"4+B*0"3+C*0"2+D*g + E

Parameter Constant

A= (1.00000E+00 ]

B= |1.00000E+00

D= |1.00000E+00

m
C = |1.00000E+00 O
m
L

E= |1.00000E+00

| cancel [ 0K ]

Figure 18. Parameter Dialog
Initializing the Parameters

The Parameter Dialog records your “guesses’ for the parameter values. This parameter list
isa“Tab group” and the Tab key will rotate among them, from top to bottom. You can cut-
and-paste but do not hit Return before you have finished with all of them.

In general, you will be using your own data and a model that you have thought about.
Therefore, you should have at least arough idea of the correct parameter values. As described
more fully in the section Technical Details, Regresst achieves an optimization by converging to
alocal optimum that is determined by the initial parameter values and the (unknown) basin
of attraction. In fact, what you really seek is the global optimum. In the generd case, there
will be more than one optimum and the one you get may not be the one you want. In very
simple cases, with only one or two parameters, there is usually only one optimum. If you
know your data and your model, as you should, then your starting parameter estimates should
be close enough to optimal to enable Regress+ to converge on the global optimum very easily.

The default value for all parametersis 1.0. Since we want parameters A-C to remain zero,
enter zero and click Constant for each of them. When a parameter is stipulated as Constant,
it isthe same thing asinserting a number into the equation instead of a parameter. By making
A-C Constant, we are left with just two parameters, D and E. Allow D and E to keep their
default initial values.
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Accepting the Initial Parameter Values

Were you to click Cance at this point, you would return to the Setup dialog. However,
assume that you are satisfied with both the model and initial estimates of the parameter vaues
and just click the OK button (or hit Return or Enter). The Parameter dialog will be replaced by
the Display dialog, shown in Figure 19.

y = A "4 +B*R"3+C*v"2+D*w + E

A =0.00000E+00
B =0.00000E+00
C=0.00000E+00
D = 5.44315E-01

E=2.44112E+00

R-squared = 0.92876

| Cancel | H Continue H

Figure 19. Display Dialog

Figure 19 shows parameters A-C ghosted out, indicating their Constant status. The values
shown for D and E are the optimum values for those parameters, according to the least-squares
criterion. At the bottom of the dialog is the value for R-squared. Finaly, the two buttons are
disabled because, given the Setup, there is nothing left to do from this dial og.

However, there are two actions left, if you choose. The first is to Save or SaveAs... the
results. If you Save, then an output textfile will be placed in the default folder with the default
filename Bode.Ply.LSout. Thisfilenameis constructed from the input file prefix, the model,
and the criterion. The suffix isaways .out. If, instead, you SaveAs..., you will get to choose
the filename and the default folder.38 For this example, select Save from the File menu, or hit

38 The default folder is determined, in part, by your Finder preferences.
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Command-S, to save the output file. Since the List Data option was selected during Setup, a
tab-delimited .list file will be saved at the sametime.

The second action you might wish to take isto look at a plot of the data and model together.
While the Display dialog is showing, the Displays menu will be enabled. Creste a
graph by selecting the Graph Show/Hide menu item (or hit Command-G). Thismenu item is a
toggle and will alternate between showing and hiding the graph. In this case, the graph
appears as shown in Figure 20.

S0 —

-

0 g0

Figure 20. Graph of Bode Data and Linear Model

If you have read the Tutorial, then the format of this graph will look familiar. The abscissa
isaways labeled X and the ordinate Y. The scaling isautomatic and you cannot change it. In
return for thisrigidity, you get agraph as easily as one could wish, just a single keystroke.

If the Graph window is frontmost (active), the Displays menus will enable the
SaveasPICT... menuitem. Selecting this will bring up the SaveAs... didog and enable you
to save the graph to a black-and-white PICT file. This PICT may then be cut-and-pasted into
any document using the global Clipboard. Thisisexactly what was done with Figure 20.
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Whenever aPICT is pasted into a document, e.g., with a word processor, you may crop
the whitespace around the edges without damaging its appearance. However, if you resize it,
the fonts will be degraded. Regresst+ PICTs are sized to fit on any standard page with standard
margins, as shown.

Output Files

Output files are tab-delimited textfiles and can be viewed using any text editor, such as
SmpleText™. They appear best when displayed/printed in a monospaced font of size 10,
e.g., Courier 10.

Look at file Bode.Ply.LS.out. Much of what appears is smply a repetition of the input.
The parameters are again listed, in this case with the word “ constant” after A-C. The Summary
Statistics should also look familiar except for the last one. The standard-error-of-estimate,
which measures the average error of the model, is defined in Equation 33.

Std. Error of Estimate = ESS 33.
(# points— # parameters

where ESS is the Error-sum-of-squares and # parameters does not include any held Constant.

Here, the standard-error-of-estimate is about four which, looking a Figure 20, appears to
be areasonable value for a“typical” prediction error.

The file Bode.Ply.LSlist contains the data that were used to cregste Table 10. Table 10,
column 5 liststhe values for y that were predicted (estimated) by this optimized model. Table
10, column 6 lists the signed residuals. The worst prediction, for Neptune, is marked by an
asterisk.

Before we leave this example, note that Figure 20 suggests strongly that a quadratic model
might be alot better than alinear model. Adding the extra parameter guarantees, of course, that
it will not be any worse. [The optimal quadratic could always make the quadratic term equa to
zero and thus reproduce the linear model.] Y ou should now have enough information to try
out this quadratic on your own.

One thing that Regress+ does not do is explicit stepwise regression. That is, it does not
carry out al of the statistical tests necessary to determine whether or not an additional parameter
gives significantly better results. Thisis usualy easy to do only with a generalized linear
model, such as a polynomial.

Where Regresst really shinesiswith nonlinear models. Let ustry one of those.

A Nonlinear Model

In the context of regression, the term “nonlinear” refers to the unknowns in the problem.
Once an analytical form for the model has been chosen, the only unknowns are its parameters.

As an example of anonlinear model, consider again the Daytime data discussed in the Tutorial.
Drop the file Daytime.in onto Regresst+.
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Select the sine (Sin) model from the Equations menu and check Confidence Intervals in the
Setup dialog. Hit Return.

In this nonlinear example, the parameters appear in places that no finite polynomia could
reproduce exactly. A sinefunction is transcendental and only an infinite number of terms will
suffice. Consequently, there is no smple matrix computation that will optimize this model.
Not only that but, due to the periodic nature of trigonometric equations, there are a number of
spurious optimain this problem and you must make good starting estimates for the parameters
if you want to converge to the best solution. However, thisis easy to do, assuming that you
understand the data and the model.

Parameter A
Thisisthe amplitude (half-height) of the snewave. Looking at Table 1 (pg. 3), at
the Daytimes for 6/21 and 12/22, a good guess would be 187.5 minutes.

Parameter B
Thisisthe frequency, the reciprocal of the period, which should be about 1/365 days
= 0.0027 per day.

Parameter C
Thisoneistricky. Itisthe phase of the sine wave, indicating the offset along the
abscissa. A sinewave begins by rising from its average. With these data, that occurs
at the verna equinox (about 3/23). This dataset, on the other hand, startsat 1/1
which is about a quarter cycle befor e the start of the sine wave. Therefore, the

phase should be about —172 = —1.6. The phase is dimensionless.

Parameter D
Finally, parameter D represents the average Daytime which is roughly the length of
the day at an equinox. Using the average of solstice values, thisis approximately 727
minutes.

Accept theseinitial values (hit Return).

The optimum values are those given in Equation 26 (pg. 37). As R-sgquared indicates, it is
an excellent fit. Check out the graph.

Since we opted for Confidence Intervals during Setup, the Continue button is now enabled,
indicating that the modeling is not finished yet. Click Continue.

Thefirst thing you see is amessage that Regress+ is Initializing the process for computing
confidence intervals. The latter involves a nonparametric bootstrap and it takes a bit of setting
up. A progress bar indicates the amount of time remaining in this phase. In generd,
initialization time is proportional to the number of parameters and the number of points.

After thisinitialization phase, the bootstrap sampling will begin. Since we did not change
the default Accuracy, this quantity will be equal to five, meaning that there will be 1,000
nonparametric bootstrap samplesin thisanalysis. After afew minutes, depending on the speed
of your computer, the Display dialog will look something like Figure 21.
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y = A*sin(2mB*y + C) + D

A=1.83325E+02

M
1.81E+02 1.86E+02

B = 2.73605E-03

f T
2.73E-03

1
2.74E-03

C=-1.39082E+00
p— t i i i
-1.41E+00 -1.37E+00
D =7.28424E+02
7.27E+02 7.30E+02
Working on confidence intervals (Accuracy =5, LS) ...
| Cancel — I H Continue H

Figure 21. Working on Confidence Intervals

It isnot likely that your run will ever look exactly like Figure 21 because the bootstrap is a
stochastic process and seldom proceeds twice in precisely the same way.

Theitemsin thisfigure deserve some comment. First, the optimum parameters are shown
inbold. Just below each, thereis abar of varying thickness. Near the middle of a bar, athick
vertica marker shows the position of the optimum. Usually, its thin counterparts, on ether
side, will eventualy occur in pairs, with the inner pair denoting the 90-percent confidence
interval, the middle pair the 95th, and the outer pair the 99th.

Often, there will be fewer than six confidence limits showing. For instance, Figure 21
displays estimates for dl three confidence intervals for parameters A and D but not for
parameters B and C. Both of these are missing the lower limit for their 99-percent confidence
intervals. This means that the number of bootstrap samples examined so far is insufficient to
reach such an extreme value. If the analysis ends without the confidence interval you require,
your only recourse is to Restart (File menu) and use a larger Accuracy. Occasiondly, the
bootstrap distribution is so skewed that even 5,000 bootstrap samples (the maximum) is not
enough to obtain al three confidence intervals for al parameters. However, this seldom
happens when the model is acceptable.
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When these horizontal bars appear, they will always be bounded by numerica limits. If
any of these limitsis uncertain, due to an insufficient number of bootstrap samples, then it will
appear initalics in the Display dialog. Any confidence limit that is still uncertain when the
analysis is finished will appear in the output file next to a paren instead of a square bracket.
The value reported, in such cases, is just the appropriate extremum in the empirical bootstrap
distribution. It should not be trusted as a genuine confidence limit.

Since the bootstrap is stochastic, the confidence intervals it estimates are not perfectly
reproducible. However, they get better with increasing Accuracy. Table 11 shows how the
confidence intervals for the amplitude, A, vary with Accuracy. You could perform the same
experiment, with similar results.

Table 11. Daytime Model—Amplitude Confidence Intervals

Accuracy % Confidence Lower Limit Upper Limit

1 90 182.069 184.423
95 181.749 184.842

99 181.307 185.261

5 90 182.247 184.318
95 181.944 184.594

99 181.354 184.991

10 90 182.233 184.361
95 181.931 184.630

99 181.228 185.347

15 90 182.149 184.325
95 181.858 184.637

99 181.281 185.230

20 90 182.262 184.485
95 181.956 184.802

99 181.353 185.389

25 90 182.258 184.412
95 181.960 184.754

99 181.432 185.274

The amplitude was chosen for this experiment because it is the most variable of the four
parameters. Thisis indicated in Figure 21 by the thickness of the horizontal bar associated
with each parameter. Thethickest bar isthe most variable and the thinnest is the least variable.
Note that thisisjust an order metric; the variability is not proportional to thickness.
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Finally, the default Accuracy is five. This is the smalest Accuracy that you should use if
you are going to report the results. The Setup dialog permits a value of one but this is useful
only for a cursory examination of the results. Y ou should never useit for any serious work.

Transformations?

Regresst+ takes great pride in achieving all of its results without using any transformations,
or any approximations other than those normally associated with bootstrap sampling. On the
other hand, in the general literature, alot of use is made of transformations. The reason is that
nonlinear models are not mathematically tractable and, most often, only a transformation to a
linear model will yield any answer at al. Although thisis common practice, itis usualy a very
bad idea. Once you transform the dependent variable in a nonlinear fashion, you do the same
to any errorsin that variable. Consequently, if you then carry out aleast-squares analysis, for
example, you are no longer minimizing ESS but some nonlinear function of ESS. Even
though the original model and the transformed model may be algebraically equivalent, they will
not be statisticaly equivalent unless all the points fall exactly on the model curvel!
In other words, the transformed model will give the ML result only when ESSis zero.

Let uslook at asimple example. One of the most common transformations is to take logs

of both sides of an equation. This is done by dl pocket caculators, for instance, whenever
they try to compute the least-squares result for an exponential model (Equation 34).

y = Aexp(Bx| 34.

Taking the logarithm of this equation gives a model expressing log(y) as a linear function
of X. To test the equivalence, file Transform test.in was created. This is a synthetic dataset.
The recipe for its construction is given in Equation 35.

y = 15exp(—0.03x) +¢& ~Normal (0, 0.1) 35.

The random errors are genuine zero-mean Gaussian errors, so least-squares will give the
true ML result in this case.

Drop thisfileonto Regress+. Use the exponential (Expo) model and make parameters B,
C, and E constant at zero (so that they will not be used). You will get an excellent result, with
the value of R-squared = 0.99887. The ML parametersare A = 14.9047 and D = —0.0296642.
These are very close to the true answers. The graph is shown in Figure 22.

Good models make good predictions. In this case, the standard-error-of-estimate = 0.12.

For comparison, use the file Transformed.in. This is the same dataset, after taking natural
logs of both sides. Repeat the previous steps but using the model shown in Equation 31.

This time R-squared = 0.98347, seemingly a wor se fit, even though the data have not
changed! Thefitted parametersare D = B =—0.0274139 and E = loge(A) = 2.59645.
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Figure 22. True Exponential Model

In the transformed model, the interpretation of B (D) is unchanged but parameter E is now
the natural logarithm of our previousvauefor A. Thus, A = exp(E) = 13.4160. Asyou can
see, both A and B are worse estimates than before (cf. Eg. 35). Moreover, the transformed
modd gives a standard-error-of-estimate = 0.159205. However, this too is the logarithm of
the actua standard error. Again, taking the antilog, we find that the actual standard error for
thismodel is 1.2, ten times the error of the real model! The graph of this linearized model is
shown in Figure 23.

Isit ever advisableto take logs of both sides, or some other nonlinear transformation? Of
course, provided that you know exactly what you are doing and can interpret the transformed
results correctly. For instance, many exponential models are used with datasets that span a
large number of orders of magnitude. Taking logs of both sides might be appropriate in such a
case. Still, thelog function will compress large values more than small ones and will skew the
model accordingly, just as Figure 23 suggests.

Other kinds of transformations may have different effects on the errors and their impact on
the model is not always easy to predict, nor isit easy to remove the effects of a transformation
after the fact.

In case you were wondering, linear transforms don’'t matter. A linear transformation of

an equation consists in multiplying both sides by a constant and/or adding a constant to both
sides. This amounts to nothing more than a change of units (e.g., Centigrade to Fahrenheit)
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and will have no effect on the model, although it will change the parameters. Remember, units
are very important.

Figure 23. Log-transformed Model
Weighted Regression

If you are fortunate enough to know the standard deviation of your measurements at each
value of x, and know that they are not al the same, then you will get a much more accurate
model by doing aweighted regression. In Regresst+, the weights are input as a third column
vector. They must, of course, dl be greater than zero, athough it is not essential that they
represent one sigma; any constant multiple (> 0) of one sigma will suffice (see Equation 20,

pg. 29).

An example of such variable precision was depicted in Figure 2 (pg. 6). To see how much
difference knowing the actual weights can make, let us first pretend that the precision at dl of
these seven pointsis the same and do a non-weighted regression. The data can be found in the
file Hale_Bopp.CN.in. Use the model given in Equation 34 with the List Data option. Use
Least Squares without weights (now an option). The results are as follows:

A =2,763.39

B =-0.978253
R-squared = 0.82936
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Presumably, this exponential model explains only 83 percent of the information in the data.
For scientific data, thisis not a very impressive result.

The graph of this unweighted model is shown in Figure 24.

200 —

Figure 24. Hale Bopp Data -- Without Weights

Restart (see File menu) and Use Weightsthistime. The new results are as follows:

A =2,926.11
B = -1.04642
R-sgquared = 0.99354

The latter parameters are smilar to the former set but the value for R-squared is now much
better than before. Given this R-squared value, we would have no hesitation in stating that the
correct moddl is exponential. With the unweighted regression, we would be much less certain
about making such aclaim.

The graph of this weighted moddl is shown in Figure 25. The error bars are an option,
found in the Displays menu.

Notice, in Figure 25, that the model does not try very hard to reproduce the y-vaue at the
point x = 3.1 AU. This point hasthe largest uncertainty and, therefore, the least credibility.
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Figure 25. Hale Bopp Data -- With Weights

Another indication of the value of the weights can be seen in the residuals. In the
unweighted regression, the worst residual is at 3.1 AU; in the weighted regression, it is now a
6.8 AU. Also, inthe weighted case, the worst residual is 9 timeslarger than the best while, in
the unweighted case, itis 23 timeslarger. Clearly, the use of weights had a moderating effect
on the variability of the model predictions,

Care must be taken when interpreting weighted results. The weighted residuals have been
divided (normalized) by their respective weights. For this reason, the prediction error a 3.1
AU appearing in Figure 25 is much less than it appears to be. Similarly, the R-squared value
that is computed for a weighted regression uses the weighted total-sum-of-squares.

User Model

Even though Regress+ offers a large variety of models in its Equations menu, there may
come atime when the model you desire cannot be fabricated from any of the built-in set. If this
happens, then you have the option of typing in the equation yourself. To illustrate, we shall
use the track data described earlier (pg. 25).

The model selected for these data, shown in Equation 18, is one that could be constructed
from the genera power model (Pow) at the cost of diminating one parameter and redefining
some others. However, just to show that it can be done, we shall define the model exactly as it
appears in Equation 18.
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Drop the file Track.in onto Regress+. Select the User-defined model from the Equations
menu (Command-U). The Setup dialog will be replaced with a new dialog (see Figure 26).

User Model

Yy = |A*8"4+B*R"3 + C*y"2 +D*w + E

Cancel " 0K I|

Figure 26. User-Model Dialog

The white box contains a highlighted copy of the current model which you may edit as you
wish. Thereareonly afew caveats:

* You must have at least one parameter and, at most, ten.

* The parameters must be labeled A-J and x must appear at least once.

* The dependent variable, y, may not appear on the RHS of the equation.

» The RHS may have at most 250 characters.

* You do not need to use all possible parameters, but you may not skip any.

» The operators and functions allowed are limited to those listed in Table 12.

* Everything is case-sensitive.

» Whitespace characters in the expression are ignored.

* Very little error-checking is done to validate the model. Y ou are on your own!

These operators and functions have their usual priorities but alibera use of parentheses is
recommended, if only for legibility. Apart from the exponentiation operator, the User-model
gyntax is very smilar to the C-language syntax. With Table 12, the following restrictions

apply:

* The constant, Pi, is recognized and has approximately 18 significant figures.

* The“minus’ symbol must be a hyphen, not the Option-hyphen.

» Unary minusis allowed only when it isthe first character on the RHS or immediately
following aleft paren.

» Unary minus takes precedence over exponentiation, i.e., —x"2 is a positive number.

* Implied multiplication and unary plus are not supported.

* All trigonometric functions are in radian measure.

» Thelog() and exp() functions are the natural variants, not their base-10 counterparts.

This set of operators and functions is likely al you will need for a mathematical model of

rea data. When combined with the allowable length of 250 characters, even complicated
expressions may be constructed.
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Table 12. User Model—Valid Operators and Functions

Symbol Interpretation
( left paren
) right paren
+ addition
- subtraction
- unary minus
* multiplication
/ division
A exponentiation
abs absolute value
acos arc cosine
acosh hyperbolic arc cosine
asin arcsine
asnh hyperbolic arc sine
atan arc tangent
atanh hyperbolic arc tangent
cell celling
cos cosine
cosh hyperbolic cosine
exp exponential
floor floor (or trunc)
log logarithm
sin sine
sinh hyperbolic sine
sort square root
tan tangent
tanh hyperbolic tangent

Overwrite the polynomia model in the dialog with the mode in Equation 18.

appear as shown in Equation 36.

with only the RHS written in the edit box.

y = A*x"B+C

It should

36.

Hit Return. This will restore the Setup dialog just as though you had picked this model

from the Equations menu.

Proceed as usua from thispoint. The optimum values are those given on page 26. These
values can be found even using the default initial parameter values but convergence will be
more rapid if you make better initial guesses.

If you try the Minimum Deviation criterion as well, then you will probably observe that
convergence is slower with this metric. Thisis usualy the case. In addition, the confidence
intervals for the parameters are usually wider than with least-squares.
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Stochastic Modeling

Using Regress+, the procedure for finding the optimum model for a set of random variates
isamost exactly the same as with deterministic input. Most of the dialogs and menus behave
just as you would expect. The only changes are as follows:

* The input file has only a single column.

* The Setup dialog has different options enabled.

* The Distributions menu is enabled instead of the Equations menu.

* Thereisno User Model.

* With discrete variates, a Chi-sgquare criterion appearsin place of the K-S criterion.
* The Accuracy indicator is always enabled.

Aswe go through a few examples, the reasons for these changes will become apparent.

L et us begin by considering an example in which we know al of the answers beforehand.
The file Normal_2 3.in is asample of 30 variates that are genuinely ~Normal(2, 3). How
such aknown sample may be obtained, using Regress+, will be discussed later. Drop this file
onto Regress+, check Confidence Intervals, set Accuracy = 10, and accept dl other defaults in
both the Setup and Parameter dialogs.

Unlike aregression, the goodness-of-fit metrics for stochastic modeling are not obviously
good or bad. Usually, the only way to tell is to do a Monte Carlo simulation, conditioned on
the model and sample size. For thisreason, Accuracy is never disabled with stochastic data

After the optimum, ML (or alternate) parameters have been obtained and the Display dialog
appears, select the Continue button (or hit Return). This will initiate the goodness-of -fit test.
The amount of time that it will take is roughly proportional to the number of data points, the
number of parameters, and the Accuracy. Once the progress bar indicates that the test is over,
the fit will be evaluated on the basis of the wor se of the two criteria listed in the Setup dialog.
This evauation will be reported in the Display dialog and in the title of the Graph window.

The evaluation is estimated by a parametric bootstrap, as described in the Tutoria, and is
based on a one-sided test of the percentile of the criterion value, computed using its empirica
distribution, as shown in Table 13.

Table 13. Stochastic Model—Goodness-of-fit Assessments

Assessment Percentile (P)
ACCEPTABLE P<90
MARGINALLY UNACCEPTABLE 90<P<95
UNACCEPTABLE 9%5<P<99
VERY UNACCEPTABLE P> 99
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Thus, acriterion valueisVERY UNACCEPTABLE if itisso large that it falls in the upper
one percent of the metric’'s CDF. Most often, if amodel istruly appropriate, the percentiles for
both metrics will fall in the range [40, 60].

In this example, the ML estimate for the mean (A) is 1.49844 and the bias-corrected
estimate for the population standard deviation (B) is 2.48715. Thereal answers are, of course,
2 and 3, respectively. However, Regresst+ has no way of knowing this, and neither would
you, had the source of the data not been disclosed above.

In the .out file, the observed ML and K-S metrics are reported to be in the 52nd and 2nd
percentile, respectively. These percentiles are not perfectly reproducible since, as noted earlier,
abootstrap is, itself, a stochastic procedure. With the worse metric in the 52nd percentile, this
fitisclearly ACCEPTABLE, even though the optimum parameters are not exactly the same as
those of the parent population.

One reason for picking this example is that, given the estimated model, it is easy to find
confidence intervals for its parameters from theory alone. Let’sdo so.

Recalling the discussion on page 32, the central, 95-percent confidence interval of the mean
should extend 1.96 standard errors on either side of the mean, assuming that a sample of size
N = 30 ishig enough to use Normal statistics. Since the estimated standard error is 0.454, this
95-percent confidence interval should therefore be [0.608, 2.39]. The parametric bootstrap
procedure gives [0.635, 2.41].3°

The latter interva assumes that the true parent population is the one estimated from the data.
Also reported in the .out file is the corresponding confidence interval from a nonparametric
bootstrap, computed because you checked Confidence Intervals. This estimate is based on a
resampling of the data, not on sampling the moddl. It gives an interval of [0.789, 2.24]. The
fact that these two intervals are not very different is another indication that the model is a good
one. Which of these two confidence intervals is to be preferred depends entirely on the goals
of your analysis.

Moving on to the standard deviation, we note the following theoretical result:

(N-1)s?

02

~ X2(N-1) = Gamma(Z, Nz_l) 37.

where 22 is the variance estimated from the sample and 02 is the true population variance.

With N = 30, the appropriate percentage points from the Chi-square distribution, using any
table, are 16.0 and 45.7. Making the indicated substitutions, we find that the theoretical 95-
percent confidence interval for the standard deviation of the estimated model is [1.85, 3.12].
The parametric and nonparametric bootstraps estimates were [1.87, 3.14] and [2.15, 2.94],
respectively. This suggests that our particular sample was not as variable as one might have
expected.

39 Once again, your results may differ dightly.

71



Looking at the parametric bootstrap estimates for the confidence intervals of the parameters
of our estimated model, we observe that neither the true mean not the true standard deviation of
the parent population may be regected with 95-percent confidence, based on this one sample.
Conversely, had we begun with the true parameters, we would have found that the estimated
parameters cannot be rejected either, at the same confidence level. Finally, we note what we
wanted to demonstrate once again, namely, that these bootstrap techniques are good estimators.
Thisis especialy important since, in the vast majority of analyses, theoretical computations are
rarely feasible.

Discrete variates may aso be considered. The Discrete submenu was disabled in the
previous example because Regress+ knew that it was inappropriate. Discrete data are signaled
in one of two ways. Thefirst isto write the input vector as a set of (positive) integers.

Unless at least one variate contains one or more decimal
places, Regress+ will consider the sample discrete.

The second method is to input grouped data, as follows:

@valuel frequencyl
@value2 frequency?2
@vaue3 frequency3
etc.

In thisformat, the @ symbol must be the first character in each record, else the record will be
treated as ablank line. Valueswith afrequency of zero need not be entered.

The files Rolls3.in and Rolls3G.in illustrate these respective formats. This example was
discussed on page 14. To reproduce the results shown in the Tutorial, use a NegativeBinomid
model and a Constant value of 3 for parameter B. Actually, in part because this is such alarge
sample, Regress+ makes good initial guesses al by itself.40

With one parameter |eft, the ML estimate is 0.169090. The theoretical value (see Tutorial)
iIs1/6. Asyou can see by experimenting, it makes no difference whether the input is grouped
or not, athough the grouped fileisalot smaller.

Since this is a discrete model, the dternate criterion is Chi-square. This is, in fact, the
usual goodness-of-fit metric for discrete data and tests the correspondence between the
theoretical and empirical histograms, which can be observed in the graph of the result. Clearly,
itisvery good. How good can be determined from the Chi-square value.

The expected value of a Chi-sgquare statistic is equa to the number of degrees of freedom.
In practice, this is equal to the number of histogram bins examined during the test which, in
this case, is approximately equal to the observed range, 54. Actualy, Regress+ has to extend
thisrange so as not to truncate the tails significantly and, thereby, short-change the Chi-square
statistic.

40 Parameter B must be a Constant integer. Moreover, B > 3isimpossible (see pg. A-81).
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The observed result is Chi-square = 65. How this relates to the expectation is not easy to
predict. Infact, asthe output file reports, the value 65 is in the 41st percentile. Moreover, the
file discloses that the 90-percent confidence interval for Chi-square is [45.2, 176], which
contains the value 54 but which is extremely skewed to the right. This is just the sort of thing
that the bootstrap was invented to determine.

If you desire confidence intervals, they can be determined in the manner aready described.
However, with such a large file, it may take a while, depending on the speed of your
computer. Inthe Displays menu, there is a Timeout item. This item is enabled only during a
goodness-of-fit test, and only if Confidence Intervas have been checked. When Timeout is
selected, Regresst will pause for one second after the goodness-of-fit test has finished, then
continue with the remainder of the analysis, without your having to click Continue.
Thisis done so that you won't have to wake up in the middle of the night to hit Return!

Generating Random Samples

Although it is not the primary purpose of this software, Regress+ includes the capability to
generate a (tab-delimited) textfile of random variates, using any alowable stochastic model.
This feature exists because Regress+ must create such samplesin order to perform a goodness-
of-fit test. The sample file may contain from 1 to 9,999 rows, having from 1 to 999 columns.
By default, thisfilewill have a .samp extension. Since this facility allows you to create afile

of as many as 9,989,001 doubles, your destination volume will first be checked to ascertain
that it has room for such afile.

To create thefile, proceed asfollows:

1. Start with an input file which could, itself, be a sample from your desired parent
population.

2. Select the model as usual.
3. In the Setup dialog, check New Sample(s).

4. In the Parameter dialog, enter your desired parameter values, make them all Constant (so
that Regresst will converge immediately), then click OK.

5. You will now see a Sample dialog similar to the one shown in Figure 27 but initialized to
your current sample size.

6. Fill in the left box with the number of desired columns and the right box with the
number of rows. Click OK.

7. Fill in the SaveAs... didog as usual .41

8. Thefileisfinished as soon as the watch cursor goes away .42

41 Asnoted earlier, this may change your default volume.

42 |f the variates are discrete, they will not be grouped.
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Creating random variables from a known distribution is not an easy task. Often, it takes
longer than you might expect. One of the reasons that some of the model parameters described
in Appendix A are constrained to a range smaller than that described in standard references is
due to the fact that permitting them to get much larger would mean that random samples would
take far too long to generate. The Betadistribution is an obvious example as you will discover
if you try to make some. These synthetic samples are of unusually high quality because the
underlying pseudo-random number generator is state-of-the-art (see Technical Details).

Random VDariate Sample(s)

Generate |1 sample(s) of size |[1000

| cancel " 0K !ﬂ

Figure 27. Sample Dialog

Summary

This completes our excursion into the world of Regress+. The examples discussed above
illustrate all of its principal features. There remain some details found in the output files, some
warning messages, for instance. However, most of these are self-explanatory. Just in case
they are not, the section Regress+ Reference describes all of the menu and dialog items. Error
and warning messages are listed in Appendix B.

By this time, you should be feding pretty confident about your chances of finding an
optimum model for your data. Before you get too confident, however, you should first read
the next section. Lifeisn't always that easy!
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WHAT CAN POSSIBLY GO WRONG?

Regress+ is about as robust as possible, considering what it does. However, nonlinear
optimization in amultidimensional parameter space is a very hard task and, sometimes, things
can gowrong. This section describes six major faults that might affect Regress+ performance.
Minor faults, explicable in just a few sentences, are described either in the Reference section,
which follows, or in Appendix B.

Failure to Converge

Regress+ reports al optimum parameter values to six significant figures. Therefore, it
considers an optimization to have converged when all of the parameters achieve this precision.
It givesitsalf alot of chances but, occasionally, this allowance is not sufficient. In that case,
you will get an dert to the effect that convergence was not achieved.

At this point, you have the option of Restarting (File menu). There is no limit on the
number of Restarts.

Regresst+ will Restart from where it left off. When you see the Parameter dialog, you will
probably note that the parameter values are now different from their previous values. It is
possible that simply giving Regress+ more time will result in eventual success.

If you try several times, convergence might still prove elusive. This usually means that
the sample sizeistoo small and/or the model form is not very good. As a rule-of-thumb, you
should try to have at least 15 points per (non-Constant) parameter. In the case of regression,
these should be unique points (unigque values of x).

Thereisone, final trick you can try if you lose patience with Restarting. You can always
make some of the parameters temporarily Constant and allow the othersto converge. Regress+
will nearly always converge with just two variable parameters. It is possible, in this fashion,
to “creep up” on the desired optimum.

Once in awhile, you may find that convergence is impossible when dl of the parameters
are allowed to “float,” i.e., tovary. You may be forced to make one of them Constant. This
condition is rare and is due to the shape of the parameter space, given the model and data.
Should this happen, there isreally nothing that can be done to aleviate the problem completely
except to use a different, preferably larger, sample.

Convergence to an Incorrect Solution

It was noted earlier that a nonlinear optimization may have multiple solutions. It may even
have multiple globa optima (see pg. 37). Usually, however, the spurious solution is only a
local optimum, meaning that there is a better solution that lies el seawhere in the parameter space.

For thisreason, it is crucial that i) you understand your data and desired model and ii) you
examine the “optimum” you get with Regress+ to ascertain that it makes sense. If the
parameters are not what you expected, thisis a strong hint that something may be wrong, either
with your understanding or with the result.
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One way to test the result for optimality is to Restart and use the aternate optimization
criterion. If the modd is good, both criteria should yield similar results. This test is not
perfect, however, and is certainly not guaranteed to work every time. In a mathematicaly
nonlinear world, thereis very little that works every time.

On rare occasions, it is possible that there may be a spurious solution that is not very much
different from the global optimum. If this happens, you are unlikely to notice the fault. Once
again, the only real remedy isto repeat the optimization with amuch larger sample.

Flat Response

Given some data, a model form, and an optimization criterion, the shape of the response
surface, for the criterion as a function of the parameters, is fixed. Occasionally, this surface
will be very flat in the neighborhood of the optimum. As aresult, a change in a parameter, by
an amount that Regress+ considers significant, might not yield a significant change in the vaue
of the criterion. Consequently, the value output for that parameter might not be as precise as it
appears. That is, it might have fewer than six significant figures.

Thereislittle that can be done to fix this fault except, perhaps, to add more data to the input
file.

Systematic Error

When doing a regression, certain assumptions are made concerning the distribution of the
residuals of the ML fit (see pg. 30). Regresst+ does not assess the acceptability of the empirical
distribution. To do so would require an entire bootstrap analysis. However, a smple test for
an undue amount of systematic error is carried out.

The way this test works can be seen by looking a the resdua column from a .list file
(e.g., Table 8, pg. 43). If you scan down this column, you will see a sequence of positive and
negative values, indicating that the prediction is greater than or less than the observation,
respectively. If the residuals are random, as assumed, then the sign of the residua must be
random as well. In fact, there should be a probability of 0.5 that any residua is negative.
Furthermore, given the total number of plus and minus signs, the distribution of the number
of runsis predictable.

Regresst+ assesses systematic error by comparing the number of observed runs to the
theoretical prediction. For instance, in Table 8, there are 19 runs.  Theory predicts 22.5 runs,
but it also predicts that the probability of observing at most 19 is 14 percent. Regress+ ignores
systematic error, as defined here, unless the number of runs is so smal that its probability is
less than one percent.

Consequently, if you see an alert saying that there is an “unacceptable amount of systematic
error” then you can be sure that Regresst is at least 99-percent certain of this assessment. In
fact, it isa conservative estimate. Passing arunstest on the sign of the residual is a necessary,
but not sufficient, criterion for the absence of systematic error. Also, if the sample size is very
small, it is possible that Regresst+ might not be able to attain 99-percent certainty even when
thereisonly one run. Should this happen, no alert will be displayed.
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Very Slow Progress

Finding the optimum parameters for a chosen model form isthe easiest thing that Regress+
does. It isaso the quickest. Most of the time required by this software is devoted to the
bootstrap phase of the analysis, or the preparation for it. Without indulging in approximations,
which Regress+ refuses to do, the time spent is unavoidable even though it may try your
patience.43

Asalittle experimentation will disclose, the two bootstrap phases have a computation time
that isroughly proportiona to the sample size, the number of (non-Constant) parameters, and
the Accuracy. The phase labeled “Initializing confidence intervals’ is a jackknife computation
requiring a time roughly proportional to the sample size and the number of (non-Constant)
parameters.

In al cases, the form of the model and the choice of optimization criterion are important as
well. Some models are smply harder to optimize than others and the default criterion usually
converges faster than the alternate.

When creating a sample of random variates, the computation time is obviously proportional
to the number of variates required. However, it is strongly dependent on the nature of the
distribution. For instance, it isfar easier to generate Uniform variates than it isto generate Beta
variates.

Wishful Thinking

Finally, thereisyou. It is always possible that, good intentions notwithstanding, when it
comes to modeling, your level of expertise might be insufficient to assure success.

Regresst makes alot of difficult things easy. For example, entire books have been written
on methods for finding optimum parameters for a Weibull distribution yet, with a few mouse
clicks, you can not only find these parameters but assess their variability and the goodness-of-
fit of the model as well. Thisis, of course, the purpose of Regresst. However, there are
hidden dangersin so facile afacility.

Thefirst isthat one can use this capability unthinkingly. In previous sections, it has been
emphasized more than once that an analyst must be intimately familiar with his/her data and the
likely form that a valid model should take. However, when sample sizes are smal, the
satistica power of dl tests decreases and, in a given instance, you may find any number of
acceptable models solely because there is so little information available in your dataset that even
coarse distinctions are not feasible. Alternatively, it may be that you do not know what model
form to choose because none suggests itself a priori.

A second, related danger arises from the plethora of models available in Regress+. It is
very tempting to keep trying one model after another in an attempt to obtain a dightly better
goodness-of-fit value, or to flip from one criterion to another for the same reason, or to make
the even more elementary error of disregarding the number of parameters. Regresst+ does not

43 Whenever you think that Regress+ may take along time, be sure to disable any background
tasks, e.g., a screensaver.
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perform comparative modeling explicitly. That is, it does not enable you to determine the
goodness-of -fit of different models with, possibly, different numbers of parameters and return
a metric telling you whether one moddl is significantly better than another. This you must
do for yourself.

Lastly, thereisthe all-too-common error of ignoring the context of the task and confusing
what is significant with what is meaningful. If, for example, you have a dataset and histogram
of 1,000 variates which, given their origin, should be Gaussian and look like they are, and yet
Regress+ reports that a Gaussian model is “very unacceptable,” then this result must not be
overinterpreted. In such a case, the software is saying only that there are real factors
contributing to the observations that have not been modeled; it is not saying that these
contributions are large or important. Indeed, it is more likely that they are of no consequence
whatever. Otherwise, you would aready have been aware of them. A sample of 1,000
independent points contains enough information to compass very fine distinctions, often
distinctions that you may discount with impunity.

Whatever model you choose, you must be prepared to defend it. More often than not, there
will be those who have conflicting ideas. If you declare that some errors are Laplacian, not
Gaussian, then, eventually, you may have to provide an argument describing why this must be
the case. Merely to reply that Regress+, or some other software package, says so will not
prove a sufficient rebuttal for an expert audience.

Beware of wishful thinking. Points that appear more or less linear are not necessarily so.
Likewise, a histogram that is vaguely symmetrical, with a hump in the middle, is not
necessarily Gaussian, even if your textbook talks about root-sum-squares and nothing else.
Thereisarea Universe out there, with real answers. A good analyst will try to find them.
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REGRESS+ REFERENCE

This Reference lists all of the elements and options of Regress+ and briefly describes their
purposes and limitations. This section will not repeat adl of the description presented earlier in
thisGuide. Its primary purpose isto enumerate the options and fill in any remaining gaps.

The subsections below include Input/Output, Menus, Dialogs, and Miscellaneous. Error
messages are listed in Appendix B.

I nput/Output

There is one kind of input file and four different kinds of output files that you may use.
They are distinguished by their default extensions. All of the output files may be given any
filename, including extension, as described below (see the Savefs ... menu item) All of the
various file types, including options and comments, are illustrated in the Examples folder.

Note that Regresst+ does nothing with its own files. If the program is ready for input and
you drag-and-drop any of its default output files onto the application, this file will not be
opened. Instead, Regress+ will display the standard input file dialog.

Regress+ always checks to make sure that there is sufficient space available on the target
volume for any output files that might be large.

in file
Thismust be atextfile, in Macintosh® format. It must have the (case-sensitive)
extension shown and must also have TEXT asitsfiletype. It may be created by any
kind of application that is capable of generating such afile, such asatext editor, a
spreadsheet program, a database program, etc.

The format for the different kinds of input is discussed starting on page 53. Any
whitespace delimiters are acceptable. The input records need not be sorted. There
must be at least 7 data points. In aregression, there must be at least 7 unique values
of X. With random variates, the standard deviation of the input must be greater than
zero. The maximum number of points, given sufficient RAM, is 2,147,483,647.

One caution: A vector of random variates entered as integers will be considered
discrete. To force Regress+ to consider them real, use a decimal point with, at
least, one decimal placein at |east one entry, e.g., 1000.0 or 1.0e3.

This Guide and the sample datafiles use a semicolon to introduce comments.
However, thisisjust a convention and afreer format is permissible. Theinput file
will be scanned aline at atime, looking for from one to three numbers. If thisfails,
the second choiceisan ‘@’ character in column one, indicating grouped, discrete
variates. If thisfailsasweéll, thelineisignored.
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.out file
The default filename is a combination of the input filename, the model, the criterion,
and, if appropriate, the Accuracy, e.g., Radii50.Chi.ML.25.out.

Nearly all of the contents of thisfile have been described earlier. The only elements
not discussed are afew, self-explanatory warning messages.

list file
Thisfileisan option in deterministic modeling. Itsfilenameisthe same asfor the
.out file, but without the Accuracy, e.g., Daytime.Sn.LSlist.

Its contents have also been described earlier. These contents vary, depending upon
whether or not the regression was weighted. Thisfileistab-delimited so that it may
be dropped onto a spreadsheet program, giving columns immediately.

.pict file
Thisfileisawaysan option. Itsfilenameisthe same asfor the .list file, e.g.,
BattingAvg.Gmb.ML.pict.

A pictureis saved in thisfile as abitmapped PICT. Thismeansthat it isnot
PostScript™ and will appear, in adocument, just asit did on the screen, regardless of
the printer used. The size of the picture has been chosen to fit into the normal
margins of an 8.5 x 11 inch page without using landscape mode. Asapicture, it may
be cropped and even resized but the latter operation will usually corrupt the fonts.
Although some lines may appear gray, thisis a black-and-white PICT.

Thereisno way, in Regresst, to change the format of the picture. It may, of course,
be opened in adrawing program and modified extensively.

.samp file
Thisfileisan option in stochastic modeling. Itsfilename is acombination of the
input filename and the model, e.g., BattingAvg.Gmb.samp.

Thisfile contains a sample of random variates, created as described on page 73. Itis
tab-delimited, with multiple samples, if any, in separate columns.

Menus

There are at least six menus. The first three: Apple, File, and Edit, are standard; the
remaining three: Equations, Distributions, and Displays, are specific to Regress+.
In general, menu items are disabled when they are inappropriate, either because they are
untimely or because the input data are incompatible. Standard menu items have their standard
Command-key equivaents, if any.

If your configuration includes System 8 or higher, there will be a seventh Help menu.
The current version of Regress+ does not use this menu.
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Apple
Contains only the About Regress+... item, which presents a standard About
box, including the copyright notice. If you choose thisitem, you must click inside
the box to dismissit, else the program will appear frozen.

File
The Restart item is specific to Regress+; all others are standard.

Open
Brings up the standard input file dialog. Thisdialog has afilter that permitsit to
show only folders and textfiles with a..in extension. Notethat it issmpler to
drag-and-drop an input file onto the application (or its aias).

Theinput file dialog may come up unexpectedly when achosen input fileis
invalid for some reason.

Restart
Returns you to the Setup dialog (see below).

Close
TellsRegresst+ that you are finished with this input file but that you do not want
to Quit.

Save
Savesthe .out file and, if requested, the .list file, using their default filenames.
Note that any file in the default folder with the same name will be
overwritten.44

Savefs...
Use this command when you want to change the name of the .out and .list files.
If you change the destination folder for these files, your selection becomes the
default folder.

Quit
Terminates the program immediately. However, if the output would have
changed, and you have not yet saved it, you will be prompted to that effect.

Edit
Contains the standard Cut, Copy, and Paste actions. You may use these actions
for entering text whenever appropriate.

44 The default folder is determined, in part, by your system preferences. It is the folder that
you see first when choosing SaveRfs....
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Equations
Presents you with alist of the 23 built-in functions for deterministic (regression)
modeling plus the User Model, in case you want afunction not listed.

Distributions
Presents you with one of five lists, depending upon whether the input is continuous
or discrete.

Continuous A-6

Continuous H-Z
List 30 continuous distributions.

Continuous Mixtures
Lists 17 binary mixtures of selected continuous distributions.

Discrete
Lists 5 distributions. If you see this menu when you do not expect it, then you
have provided continuous input expressed solely as integers (see pg. 79).

Discrete Mixtures
Lists 4 binary mixtures of selected discrete distributions.

Displays
Allows you to see agraph of the results and save it. This menu also contains the
Display timeout item.

Graph Show/Hide
Toggle for the selected graph.

Weights Show/Hide
Toggle for including the error barsin the graph. By default, these are not
shown athough the Y -axis has been scaled to include them.

Save As PICT...
Presents a standard file dialog with a default filename.

CDF/PDF
Toggle to alter agraph of random variates from the default PDF to the CDF,
and vice versa.

Flip Display
Toggle between the display for A-E and that for F-J, if the latter exists.
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Timeout
Thistoggleis enabled only if agoodness-of-fit analysisis currently being
carried out and you have also opted to estimate confidenceintervals. It is OFF
by default. When turned ON, Regress+ will pause for one second when the
goodness-of-fit test has finished, then continue on with the remainder of the
analysis without your having to hit Continue in the Display diadlog. When the
Confidence Intervals analysis is compl ete, the program halts as usual. It does
not save any files automatically.

This Timeout is very useful when, for example, you want to run along analysis
overnight.

Dialogs

In addition to the standard file dialogs, which we shall not describe, there are five dialogs
and one window, as follows:

Setup Dialog
Used to select the model, the criterion, the options, and the Accuracy (see pg. 55).
All of these choices have been fully described previously. Canceling from the Setup
means that you are finished with thisinput file.

Note that the New Sample(s) option is not persistent and will be unchecked after
being used once.

Parameter Dialog
Used to input values for all parameters and to flag those intended to be Constant, if
any (see pg. 56). Hitting OK launches the optimization. Canceling returns you to the
Setup dialog. When Restarting, some parameter values of bounded distributions may
be shown as dightly different from their optimum values. Thisis doneto offset
rounding error in the subsequent validity check.

Upon hitting OK, Regress+ does a quick check of the validity of these values. If any
of theseisfound to beinvalid for any reason, the dialog will be shown again with the
(first) offending value selected.

Display Dialog
Results are first presented in thisdialog (see pg. 57). It alsoincludes astatusline, a
progress bar (when appropriate), and a Timeout indicator while the Timeout is ON.

Y ou must Cancel from thisdialog in order to Restart or Close. However, you
may Quit anytime.
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User-Model Dialog
Thisiswhere you enter a deterministic model of your own (see pg. 68), using the
operators and functions listed in Table 12, pg. 69.

Upon hitting OK, avalidity check isdone. If the expressionisfound to beinvalid
for any reason, the dialog will be shown again along with an error message. As
noted earlier, aliberal use of parenthesesis recommended.

Sample Dialog
This dialog appears after the Parameter dialog when you have opted to create a sample
of random variates (see pg. 74). The model and parameters used will be those
specified in the Setup and Parameter dialogs. Each sample created will appear in a
separate column in the .samp file. All of the variates are completely independent from
each other.

Graph Window
Thiswindow shows a graph of the raw data together with the model found.
Stochastic data are displayed as a histogram (see pp. 11 and 13); deterministic data
aredisplayed as X, Y points, with or without error bars (see pp. 66 and 67). The
format of this graph is fixed, with the only aternatives being those listed in the

Displays menu.
Thetitle of thiswindow doubles as a status message.
Miscellaneous

If you have not already done so, be sure to read, What Can Possibly Go Wrong? (pg. 75).
There are hidden pitfallsin al mathematical modeling, especially with nonlinear models. Some
of these pitfalls are described there.

Still, experience is always the best teacher. There is a brief learning curve even with a
user-friendly application like Regress+. |If you utilize the Examples provided in the manner
intended, then you should surmount this obstacle with little effort. The figure below outlines
the main features of Regress+ functionality.

Good Luck!
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Figure 28. An Outline of Regress+ Functionality
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Technical Details

Regress+. The purpose is to describe enough of the implementation to afford

professionals in this area the opportunity to determine whether or not these are
algorithms in which they may have some confidence. Descriptions and references are
presented for the optimization technique, the pseudo-random number generator, the generation
of random variates, and the bootstrap methodology, both parametric (percentile) and
nonparametric (BCa).

THIS section presents some details regarding the techniques and agorithms used in

The descriptionsin this section will not be sufficient to reproduce al of the code contained
in the mathematical portions of Regress+. As always, there remain the numerous low-level
details required to convert ageneral approach into aworkable application. In thiscase, most of
these are directed towards assuring that the software is robust. With nonlinear problems,
convergence and singularities are persistent concerns. Speed of execution is also important.
None of these issues will be discussed here.

OPTIMIZATION

The basic computation in Regress+ is the minimization of a (usually) nonlinear objective
function, given a starting vector of N parameters. This is done in a very straightforward
fashion via the Simplex technique [CAC84, PRE92].

This well-known technique finds a local minimum, without the use of derivatives, by
repeatedly deforming asimplex of N+1 dimensions using various geometrical transformations.
This agorithm is a “greedy” agorithm and finds the nearest local minimum, “nearest” being
defined, in part, by the shape of the local basin of attraction. One strong feature of this method
is that is cannot diverge unless the asymptote is itself a minimum. Since the latter occurs
frequently with many models, special consideration is given to this possibility. This explains,
in part, why ranges for the parameters of the models described in Appendix A often have less
than their theoretical span.

In Regresst, the smplex isinitidized partly at random, by perturbing the values read from
the Parameter Dialog, and the path to a minimum is amost never exactly the same in repeated
trials. During the initia optimization and jackknife procedures, convergence is considered
valid if and only if Regress+ finds the same optimum vector twice consecutively.

With stochastic models, the optimization is constrained by continual validity checks on the
parameters. The fact that this can be done with impunity was one of the factors considered in
adopting the ssimplex technique.

RANDOM NUMBER GENERATOR
Nearly every anaysis performed by Regress+ requires random numbers of some sort.

Hence, the pseudo-random number generator used must be highly random, very fast, and with
an extremely long period.



The generator chosen for Regresst+ is an implementation of the Ultra generator published
by Marsagliaand co-workers[MAR91]. This generator produces uniform random variates by
repeated operations on a pair of 37-digit numbers in base 32. This result is combined with
another, independent, multiplicative congruentia pseudo-random number generator to yield an
extremely random sequence with a period exceeding 10366, In contrast to the usual algorithms,
these uniform variates retain full precision regardless of the position of the decimal point.

The implementation, URandomLib [MPM98], is very fast because the basic generator is
conditionally coded, depending on the CPU, in assembly. The source code for this library has
been placed in the public domain. It may be accessed, on the Internet, at its web page:

http://ww.geocities.com/~mikemclaughlin/software/lURandomLib.html
RANDOM VARIATES

In order to assess the goodness-of-fit of a stochastic model, a parametric bootstrap (see
below) is carried out. This procedure requires N random variates, y;, selected from a specified
parametric model. The basic generator, described above, produces a sequence of random
variates that are ~Uniform(0,1). From the latter, dl other variates may be generated but the
method is often laborious and not at all obvious.

This section lists the kinds of techniques that are employed, in Regress+, for each of the 56
stochastic models available. There are five general approaches, which may be used in
combination. The list below gives the method used for each distribution.

Inverse CDF
Often, acumulative distribution function has an analytical form, CDF = F(y), such
that it isinvertible, yielding the desired variate, y = g(CDF), in closed form. Starting
with a CDF value, v, that is~Uniform(0, 1), g(v) then produces avariate that is
described by the desired distribution.

The modelsin this category are the following:

Bradford Gumbel

Burr Hyperbolic Secant
Cauchy Laplace
DoubleWeibull Logigtic
Exponential Pareto

Extremel.B Reciproca

Fisk Triangular
Generadlized Logistic ~ Uniform
Geometric Weibull

88



Numerical Inverse

Even when a CDF is not invertible, as described above, aroot can always be found
numericaly. The basic technique involves the Newton-Raphson algorithm which, in
this case, isjust acombination of the CDF and PDF. With appropriate checks for the
validity of the result, this“method of last resort” is surprisingly competitive,
especially when compared to rejection agorithms.

The modelsin this category are the following:

Beta Nakagami
Cosine Semicircular

Exact Transformation

Often, adensity function may be expressed exactly as afunction of some other
density function(s). If generating variates from the latter can be easily done, this
transformation becomes an appropriate approach for the desired distribution.

The modelsin this category are the following [PRES2, DEV 86]:

Chi Logarithmic
FoldedNormal LogNormad
HalfNormal Normal
InverseNormal Student’ st

Rejection

This method employs one or more distributions that, together, comprise an envelope
to the desired distribution. The former distributions are chosen such that generating
variates from them can be done easily. This, along with their relationship(s) to the
desired distribution constitute the rejection approach.

The modelsin this category are the following [PRE92]:

DoubleGamma Poisson
Gamma

Simulation

Sometimes, the ssimplest way to produce avariate from adistribution isto find a
stochastic process that yields aresult distributed as desired.

All of the binary mixture distributionsfall in this category because al mimic, exactly,
a pooled population composed of two sub-populations. Therefore, the mixture can
be simulated by making a random selection from a sub-popul ation with a probability
equal to the weight of that component. In addition, the following distributions are
simulated [DEV 86, RUB8L]:

Binomial NegativeBinomia
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BOOTSTRAP

Regress+ makes considerable use of bootstrap techniques in testing goodness-of-fit and in
estimating confidence intervals for parameters.

Assessing the goodness-of-fit of a stochastic moddl involves comparing its empirical
goodness-of-fit metrics to their distributions. The only way to do this robustly, without
making asymptotic, or other, approximations, so common in available tables of critical points,
isto perform aMonte Carlo simulation, akind of parametric bootstrap.

Nonparametric bootstrap techniques are used extensively to assess both deterministic as
well as stochastic models. In this case, the data themselves are used in place of a parametric
model.

It must be emphasized that bootstrap techniques, especialy nonparametric techniques, are
an active area of research. The combination of methods described below constitutes merely
one of many useful dices that may be made through the space of bootstrap methodology. It
will be along time, if ever, before the final word is said on this subject.

Parametric Bootstrap

After Regress+ computes an optimum model for a set of random variates, the next phase of
anaysisisto determine whether or not the model is acceptable. This is done using one-sided
tests for the two metrics listed in the Setup dialog. The null hypothesis, in each case, isthat the
observed metric is not too large. That is, it would not fall in a high percentile of its
distribution, conditioned on both the model and the sample size.

The approach here isthe intuitive one:

1. Sdect N random variates, where N isthe original sample size, from the putative
parent density to give one (parametric) bootstrap sample.

2.  Subject this bootstrap sample to a new optimization, exactly as was done with the
origina sample.

3.  Compute two new goodness-of-fit metrics in the usual way and save them.

4. Repeat steps 1-3 for atotal of at least 1,000 times, producing two arrays of that size,
one for each metric (aswell as arrays for the parameters).

5. Sort thetwo arrays to give bootstrap estimates of the empirical distributions for these
goodness-of -fit metrics.

6. Comparetheoriginal, observed values for these metrics to their respective
bootstrapped distributions and find the percentiles for each.

Regress+ makes an assessment based on the wor se of the two metrics (see pg. 70).
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Nonparametric Bootstrap

This description is an extremely brief synopsis of part of the excellent treatise referenced
earlier [EFR93]. No attempt will be made to present materid sufficient for implementation.
Instead, the reader is urged to consult the cited reference.

The basic idea behind the nonparametric bootstrap is that, if a sample is truly representative
of its parent population then, given suitable precautions, sampling from the sample is
tantamount to sampling from the population. The term “bootstrap” derives, of course,
from this observation.

A nonparametric bootstrap analysis proceeds as follows:

1. From an observed sample of size N, select N elements at random, with replacement,
to give a (nonparametric) bootstrap sample.

2.  Treat this bootstrap sample just as though it were an observed sample.

3. Repeat steps 1-2 for atotal of at least 1,000 times, producing arrays of that size for
whatever statistics (or parameters) might be of interest.

4.  Sort the arrays to give bootstrap estimates of the empirica distributions for these
statistics/parameters.

It isfrom these nonparametric distributions that any conclusions may be drawn.

How to take “suitable precautions’ is crucia. It is something that has only recently been
discovered and, indeed, is ill under investigation. It is known, for instance, that a
nonparametric bootstrap distribution, created as described above, is both biased and skewed
with respect to the true distributions for the same quantities. One method for correcting for
these faultsis the bias-correction with acceleration (BCa) technique. This technique is the one
employed by Regress+.

Since the cited reference devotes a large number of pages to the BCa technique, we shall
note here only the final conclusions. It is proven that the corrections made by this method are
quite valid and estimates, especially confidence intervals, are significantly improved when BCa
corrections are applied.

In addition, BCa confidence intervals have two very important features. First, they are
transformation-respecting. BCa confidence limits transform correctly if an estimated limit, w,
is transformed into some function, f(w). Thus, a confidence interva for variance could be
easily transformed into one for standard deviation.

The second feature concerns the coverage of a BCa confidence interval. A central
confidence interval of P percent should be bounded by two tails, each exhibiting an integral of
(1-P)/200. BCaintervals can be shown to have this property.

Although BCa estimates have some very excellent properties, they can sometimes take a
long time to compute. Approximate variants of the method have been developed. However, as
91



noted more than once, Regresst+ refuses to make any unnecessary approximations and,
therefore, it absorbs the time penalty usually associated with this technique. There are ample
aternatives available to anyone with Internet access and a search engine.

Unlike the parametric bootstrap, the BCa technique requires two parameters of its own.
One of these, related to the bias, can be estimated in closed form. The other, related to
skewness (acceleration), is estimated using ajackknife analysis (see pg. 77). In this analysis,
onepoint at atime is deleted from the data and a model estimated from this truncated dataset.
For each datistic/parameter of interest, an acceeration parameter is then estimated from the
skewness of the corresponding, jackknifed distribution.

In Regress+, nonparametric bootstrap methods are used to compute confidence intervals
for model parameters. With stochastic models, the origina data vector is sampled. With
deterministic models, what is sampled is the vector of (weighted) residuals resulting from the
optimum model. A random (re-weighted) residual is added to each observed y-vaue in turn,
producing a new dataset with the same x-values.
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APPENDIX A

A COMPENDIUM OF COMMON PROBABILITY DISTRIBUTIONS



<Dueto itslarge size (120 pp.), Appendix A is now published separately.>



APPENDIX B

ERROR MESSAGES



There are four kinds of error messages. Fatal errors terminate the program. Warnings tell
you that something is not going to work. Notes allow the program to continue without error,
but not in the manner intended. User-model errors indicate that something is wrong with the

model that was typed in. The various messages in each category are listed here in aphabetica
order.

FATAL ERRORS

Out of Memory!
Regress+ has run out of heapspace. After the program terminates, select itsicon,
then Get Info, from the File menu (or hit Command-1). Increase heapspace (alocated

memory) in the indicated place at the bottom of the resulting dialog. Itis OK to use
more than the 1000K suggested.

This platform is too old for Regress+.
Regress+ checks the hardware platform and the installed operating system. If the
hardware is outdated, or the System less than System 7, the program terminates.

WARNINGS

Insufficient space on default volume.
The amount of space available for an output file appears to be insufficient for the
estimated size of that file. You are unlikely to see this message unless you are trying

to create avery largefile of random variates. Y ou will haveto save such afileto a
volume with more free space.

Output file error.

Thisisagenera warning that an output file could not be created. It may be dueto a
locked volume, insufficient RAM left to make a picture, or to other causes.

Output not saved!

Y ou will see this message whenever you Close or Quit without saving the standard
.out file. If you save the output, then take any action that would cause it to change,
this message may be issued again.

There is an unacceptable amount of systematic error with this model.
Y our model failed the Runstest (see pg. 76). Thus, thereisareal factor evident in
the data that your model does not take into consideration. Note, if your sample sizeis
large, thismay be avery small factor.

There is something wrong with this dataset.

Thisindicates that the format of your .in fileis not in accordance with the rules
described on pg. 79, and elsewhere.



This model failed to converge.
Regress+ does not always succeed in achieving convergencein its all otted quota of
attempts (see pg. 75). You may try again, any number of times, by Restarting
(Command-R) and accepting all subsequent defaults.

Usually, the reason for lack of convergenceis obvious (e.g., poor initial guesses) but
not always. For instance, a parameter might fail to converge repeatedly because,
given the precision of the input, the digits trying to converge are not significant and
so the optimum is not reproducible. In this case, just make that parameter Constant.

NOTES

Since all parameters are constant, Confidence Intervals are disabled.
Confidence intervals make no sense if the parameters are not allowed to vary. They
are then exact, by definition.

Since there are duplicate points, weights are disabled.
When there are multiple values of y for a given xi, these duplicate points determine
an implicit value for the standard deviation of y(xx). Since there is nothing to prevent
this value from contradicting the value inserted into the input file as aweight (wy), the
former takes precedence over the latter. If you wish to override this message, you
must add very tiny deltas (e.g., 1e-10) to each duplicate x-value. Regress+ checks
only for strict equality.

Whenever there are duplicate points, the .out file will state that R-squared is
diminished. Thisisdueto thefact that a portion of ESSisdirectly attributable to the
scattering of multiple points at single values of x. Were there only one point at each
X, this could not occur.

USER-MODEL ERRORS

Bad constant
A constant appearsto be either infinite or, more likely, NaN (*“not a number”).

Bad expression
This means that Regress+ could not make sense of your model. It is probably dueto
atypographical error (see also, Table 12, pg. 69).

Bad parameters
Y ou must use A-E for the parameters, starting with A and not skipping any letters.
Remember that everything is case-sensitive.

Mismatched parentheses
The parentheses are unbalanced.

Starting parameters invalid!
Regresst+ does aminimal evaluation check on the model, using the default starting
parameters (all equal to one). If the result isinfinity or NaN, this message will be
issued.



Too many parameters
When you employ the User-specified model with more than five parameters, the
number of unique values of x must exceed the number of parameters by at least two.

Unknown symbol
A symbol isnot in the list of recognized symbols.



