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Preface

This Compendium is part of the documentation for the software package, Regress+. The latter is
a utility intended for univariate mathematical modeling and addresses both deteministic models
(equations) as well as stochastic models (distributions). Its focus is on the modeling of empirical
data so the models it contains are fully-parametrized variants of commonly used formulas.

This document describes the distributions available in Regress+ (v2.7). Most of these are
well known but some are not described explicitly in the literature. This Compendium supplies the
formulas and parametrization as utilized in the software plus additional formulas, notes, etc. plus
one or more plots of the density (mass) function.

There are 59 distributions in Regress+ partitioned into four categories:

• Continuous: Symmetric (9)

• Continuous: Skewed (27)

• Continuous: Mixtures (11)

• Discrete: Standard (6)

• Discrete: Mixtures (6)

Formulas, where appropriate, include the following:

• Probability Density (Mass) Function: PDF

• Cumulative Distribution: CDF

• Characteristic Function: CF

• Central Moments (dimensioned): Mean, Variance, Skewness, Kurtosis

• Mode

• Quartiles: First, Second (Median), Third

Additional items include

• Notes relevant to use of the distribution as a model

• Possible aliases and special cases

• Characterization(s) of the distribution
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In some cases, where noted, a particular formula may not available in any simple closed form.
Also, the parametrization in Regress+ may be just one of several used in the literature. In some
cases, the distribution itself is specific to Regress+., e.g., Normal&Normal1.

Finally, there are many more distributions described in the literature. It is hoped that, for
modeling purposes, those included here will prove sufficient in most studies.

Comments and suggestions are, of course, welcome. The appropriate email address is given
below.

MICHAEL P. MCLAUGHLIN

MCLEAN, VA
APRIL 2013

MPMCL ‘AT’ CAUSASCIENTIA.ORG
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Legend

∼ = (is) distributed as

i.i.d. = independent and identically distributed

iff = if and only if

u = a Uniform[0, 1] random variate(
n
k

)
=

n!

(n− k)! k!
; binomial coefficient

bzc = floor(z)

erf (z) =
2√
π

∫ z

0

exp
(
−t2
)
dt ; error function

Φ(z) =
1

2

[
1 + erf

(
z√
2

)]
; standard normal CDF

Γ(z) =

∫ ∞
0

tz−1 exp(−t) dt ; Gamma function

= (z − 1)! ; for integer z > 0

Γ(c; z) =

∫ ∞
z

tc−1 exp(−t) dt ; incomplete Gamma function

Beta(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
; complete Beta function

Beta(z; a, b) =

∫ z

0

ta−1(1− t)b−1 dt ; incomplete beta function

γ = 0.57721566 . . . ; EulerGamma
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ψ(z) = Γ′(z)/Γ(z) ; digamma function

In(z), Kn(z) = the two solutions (modified Bessel functions) of z2 y′′ + z y′ −
(
z2 + n2

)
y

ζ(z) =
∞∑
k=1

k−s ; Riemann zeta function, s > 1

1F1(z; a, b) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

exp(z t) ta−1(1− t)b−a−1 dt ; confluent hypergeometric function

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1 (1− t)c−b−1(1− t z)−a dt ; Gauss hypergeometric function

U(a, b, z) =
1

Γ(a)

∫ ∞
0

exp(−t) tb−1 dt ; confluent hypergeometric function (second kind)

Ei(z) = −
∫ ∞
−z

t−1 exp(−t) dt ; one of several exponential integrals

Ln(x) = one solution of x y′′ + (1− x) y′ + n y ; Laguerre polynomial

Qm(a, b) =

∫ ∞
b

x
(x
a

)m−1
Im−1(ax) exp

(
−x

2 + a2

2

)
dx ; Marcum Q function

OwenT (z, α) =
1

2 π

∫ α

0

1

1 + x2
exp

[
−z

2

2

(
1 + x2

)]
dx ; Owen’s T function

Hn(z) =
n∑
k=1

x−z ; Harmonic number

Lin(z) =
∞∑
k=1

zk

kn
; polylogarithm function
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Part I

Continuous: Symmetric
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These distributions are symmetric about their mean, usually denoted by parameter A.
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Cauchy(A,B) B > 0

-8 -6 -4 -2 0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Y

P
D

F

H0, 1L

H3, 0.6L

PDF =
1

πB

[
1 +

(
y − A
B

)2
]−1

CDF =
1

2
+

1

π
tan−1

(
y − A
B

)
CF = exp(iAt−B|t|)

Parameters – A (θ): Location, B (λ): Scale

Moments, etc.
Moments do not exist.

Mode = Median = A

Q1 = A−B Q3 = A+B

RandVar = A+B tan

[
π

(
u− 1

2

)]
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Notes

1. Since there are no finite moments, the location parameter (ostensibly the mean) does not
have its usual interpretation for a symmetric distribution.

Aliases and Special Cases

1. The Cauchy distribution is sometimes called the Lorentz distribution.

Characterizations

1. If U and V are ∼ Normal(0, 1), the ratio U/V ∼ Cauchy(0, 1).

2. If Z ∼ Cauchy, then W = (a+ b Z)−1 ∼ Cauchy .

3. If particles emanate from a fixed point, their points of impact on a straight line ∼ Cauchy.
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Cosine(A,B) A− πB ≤ y ≤ A + πB, B > 0

-4 -3 -2 -1 0 1 2 3 4
0.0

0.1

0.2

0.3

0.4
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D

F

H0, 1L

PDF =
1

2πB

[
1 + cos

(
y − A
B

)]

CDF =
1

2π

[
π +

y − A
B

+ sin

(
y − A
B

)]
CF =

exp(iAt) sin(Bπt)

Bπt (1−Bt)(1 +Bt)

Parameters – A: Location, B: Scale

Moments, etc.
Mean = Median = Mode = A

Variance = B2 (π2 − 6)/3

Skewness = 0

Kurtosis = B4 (π4 − 20π2 + 120)/5

Q1 ≈ A− 0.83171B Q3 ≈ A+ 0.83171B
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Notes

Aliases and Special Cases

Characterizations

1. The Cosine distribution is sometimes used as a simple, and more computationally tractable,
alternative to the Normal distribution.
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DoubleWeibull(A,B,C) B,C > 0

!2 !1 0 1 2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Y

PD
F

!0, 1, 3"

PDF =
C

2B

∣∣∣∣y − AB
∣∣∣∣C−1 exp

(
−
∣∣∣∣y − AB

∣∣∣∣C
)

CDF =


1

2
exp

[
−
(
y − A
B

)C]
, y ≤ A

1− 1

2
exp

[
−
(
y − A
B

)C]
, y > A

CF = no simple closed form

Parameters – A: Location, B: Scale, C: Shape

Moments, etc.
Mean = Median = A

Variance = Γ

(
C + 2

C

)
B2

Skewness = 0

Kurtosis = undefined

Mode = undefined (bimodal when C > 1)

Q1, Q3 : no simple closed form
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Notes

Aliases and Special Cases

1. The Double Weibull distribution becomes the Laplace distribution when C = 1.

Characterizations

1. The Double Weibull distribution is the signed analogue of the Weibull distribution.
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HyperbolicSecant(A,B) B > 0

!6 !4 !2 0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Y

PD
F

!0, 1"

!3, 0.6"

PDF =
1

π B
sech

(
y − A
B

)

CDF =
2

π
tan−1

[
exp

(
y − A
B

)]
CF = exp(iAt) sech

(
πBt

2

)
Parameters – A (µ): Location, B (θ): Scale

Moments, etc.
Mean = Median = Mode = A

Variance =
π2

4
B2

Skewness = 0

Kurtosis =
5π4

16
B4

Q1 = A−B log
(

1 +
√

2
)

Q3 = A+B log
(

1 +
√

2
)

RandVar = A+B log
[
tan
(πu

2

)]
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Notes

1. The HyperbolicSecant distribution is related to the Logistic distribution.

Aliases and Special Cases

Characterizations

1. The HyperbolicSecant distribution is often used in place of the Normal distribution when
the tails are less than the latter would produce.

2. The HyperbolicSecant distribution is frequently used in lifetime analyses.
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Laplace(A,B) B > 0

!4 !2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

Y
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F

!0, 1"
!3, 0.6"

PDF =
1

2B
exp

(
−|y − A|

B

)

CDF =


1

2
exp

(
y − A
B

)
, y ≤ A

1− 1

2
exp

(
A− y
B

)
, y > A

CF =
exp(iAt)

1 +B2 t2

Parameters – A (µ): Location, B (λ): Scale

Moments, etc.
Mean = Median = Mode = A

Variance = 2B2

Skewness = 0

Kurtosis = 24B4

Q1 = A−B log(2) Q3 = A+B log(2)

RandVar = A−B log(u), with a random sign
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Notes

Aliases and Special Cases

1. The Laplace distribution is often called the double-exponential distribution.

2. It is also known as the bilateral exponential distribution.

Characterizations

1. The Laplace distribution is the signed analogue of the Exponential distribution.

2. Errors of real-valued observations are often ∼Laplace or ∼Normal.
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Logistic(A,B) B > 0

!6 !4 !2 0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

Y

PD
F

!0, 1"
!3, 0.6"

PDF =
1

B
exp

(
−y − A

B

)[
1 + exp

(
−y − A

B

)]−2

CDF =

[
1 + exp

(
−y − A

B

)]−1
CF =

πBt

sinh(πBt)
exp(iAt)

Parameters – A: Location, B: Scale

Moments, etc.
Mean = Median = Mode = A

Variance =
π2B2

3

Skewness = 0

Kurtosis =
7 π4B4

15

Q1 = A−B log(3) Q3 = A+B log(3)

RandVar = A+B log

(
u

1− u

)
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Notes

1. The Logistic distribution is often used as an approximation to other symmetric distributions
due to the mathematical tractability of its CDF.

Aliases and Special Cases

1. The Logistic distribution is sometimes called the Sech-squared distribution.

Characterizations

1. The Logistic distribution is used to describe many phenomena that follow the logistic law of
growth.

2. lf lo and hi are the minimum and maximum of a random sample (size =N ), then, asN →∞,
the asymptotic distribution of the midrange ≡ (hi− lo)/2 is ∼Logistic.
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Normal(A,B) B > 0

-4 -2 0 2 4 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Y

P
D

F

H0, 1L

H3, 0.6L

PDF =
1

B
√

2π
exp

[
−(y − A)2

2B2

]

CDF =
1

2

[
1− erf

(
A− y
B
√

2

)]
≡ Φ

(
y − A
B

)
CF = exp

(
iAt− B2t2

2

)
Parameters – A (µ): Location, B (σ): Scale

Moments, etc.
Mean = Median = Mode = A

Variance = B2

Skewness = 0

Kurtosis = 3B4

Q1 ≈ A− 0.67449B Q3 ≈ A+ 0.67449B
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Notes

1. The distribution is generally expressed in terms of the standard variable, z:

z =
y − A
B

2. The sample standard deviation, s, is the maximum-likelihood estimator of B but is biased
with respect to the population value. The latter may be estimated as follows:

B =

√
N

N − 1
s

where N is the sample size.

Aliases and Special Cases

1. The Normal distribution is also called the Gaussian distribution and very often, in non-
technical literature, the bell curve.

2. Its CDF is closely related to the error function, erf (z).

3. The FoldedNormal and HalfNormal are special cases.

Characterizations

1. Let Z1, Z2, . . . , ZN be i.i.d. be random variables with finite values for their mean, µ, and
variance, σ2. Then, for any real number, z,

lim
N→∞

Prob

[
1√
N

N∑
i=1

(
Zi − µ
σ

)
≤ z

]
= Φ(z)

known as the Central Limit Theorem.

2. If X ∼ Normal(A,B), then Y = aX + b ∼ Normal(aA+ b, aB)

3. If X ∼ Normal(A,B) and Y ∼ Normal(C,D), then S = X + Y (i.e., the convolution of
X and Y) ∼ Normal(A+ C,

√
B2 +D2).

4. Errors of real-valued observations are often ∼Normal or ∼Laplace.
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StudentsT(A,B,C) B,C > 0

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

0.5
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0.7

0.8

Y

P
D

F

H0, 1, 2L

H3, 0.5, 10L

PDF =
1

B
√
CBeta

(
C
2
, 1
2

) [1 +
(y − A)2

B2C

]−(C+1)/2

CDF =


Γ ((C + 1)/2)

2
√
π Γ (C/2)

Beta

(
C

C + z2
;
C

2
,
1

2

)
, z ≤ 0

1

2
+

Γ ((C + 1)/2)

2
√
π Γ (C/2)

Beta

(
z2

C + z2
;
1

2
,
C

2

)
, z > 0

where z =
y − A
B

CF =
21−C/2CC/4 (B |t|)C/2 exp(iAt)

Γ(C/2)
KC/2

(
B |t|

√
C
)

Parameters – A (µ): Location, B: Scale, C: Shape (degrees of freedom)

Moments, etc.
Mean = Median = Mode = A

Variance =
C

C − 2
B2

Skewness = 0

Kurtosis =
3C2

8− 6C + C2
B4

17



Q1, Q3 : no simple closed form

Notes

1. Moment r exists iff C > r.

Aliases and Special Cases

1. The StudentsT distribution if often called simply the t distribution.

2. The StudentsT distribution approaches a Normal distribution in the limit C →∞.

Characterizations

1. The StudentsT distribution is used to characterize small samples (typically, N < 30) from a
Normal population.

2. The StudentsT distribution is equivalent to a parameter-mix distribution in which a Normal
distribution has a variance modeled as ∼InverseGamma. This is symbolized

Normal(µ, σ)
∧
σ2

InverseGamma(A,B)
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Uniform(A,B) A ≤ y ≤ B

!1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

Y

PD
F

!!0.5, 0.5"

!1, 3"

PDF =
1

B − A

CDF =
y − A
B − A

CF =
i (exp(iBt)− exp(iAt))

(A−B) t

Parameters – A: Location, B: Scale (upper bound)

Moments, etc.
Mean = Median =

A+B

2

Variance =
(B − A)2

12

Skewness = 0

Kurtosis =
(B − A)4

80

Mode = undefined
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Q1 =
3A+B

4
Q3 =

A+ 3B

4

RandVar = A+ u (B − A)

Notes

1. The parameters of the Uniform distribution are sometimes given as the mean and half-width
of the domain.

Aliases and Special Cases

1. The Uniform distribution is often called the Rectamgular distribution.

Characterizations

1. The Uniform distribution is often used to describe total ignorance within a bounded interval.

2. Pseudo-random number generators typically return X ∼Uniform(0, 1) as their output.
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Part II

Continuous: Skewed

21



These distributions are skewed, most often to the right. In some cases, the direction of skewness
is controlled by the value of a parameter. To get a model that is skewed to the left, it is often
sufficient to model the negative of the random variate.
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Beta(A,B,C,D) A < y < B, C,D > 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Y

P
D

F

H0, 1, 1, 2L

H0, 1, 2, 2L

H0, 1, 6, 2L

PDF =
(B − A)1−C−D

Beta(C,D)
(y − A)C−1(B − y)D−1

CDF = Beta

(
A− y
A−B

;C,D

)
/Beta(C,D)

CF = exp(iAt) 1F1(C;C +D, (B − A)it)

Parameters – A: Location, B: Scale (upper bound), C, D: Shape

Moments, etc.
Mean =

AD +BC

C +D

Variance =
CD(B − A)2

(C +D + 1)(C +D)2

Skewness =
2CD(C −D)(B − A)3

(C +D + 2)(C +D + 1)(C +D)3

Kurtosis =
3CD[CD(D − 2) + 2D2 + (D + 2)C2](B − A)4

(C +D + 3)(C +D + 2)(C +D + 1)(C +D)4

Mode =
A(D − 1) +B(C − 1)

C +D − 2

Median, Q1, Q3 : no simple closed form
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Notes

1. The Beta distribution is so flexible that it is often used to mimic other distributions provided
suitable bounds can be found.

2. If both C and D are large, this distribution is roughly symmetric and some other model is
indicated.

Aliases and Special Cases

1. The standard Beta distribution is Beta(0, 1, C, D).

2. Beta(0, 1, C, 1) is often called the Power-function distribution.

3. Beta(0, B, C, D) is often called the Scaled Beta distribution (with scale = B).

Characterizations

1. If X2
j , j = 1, 2 ∼ standard Chi-square with νj degrees of freedom, respectively, then

Z = (X2
1 )/(X2

1 +X2
2 ) ∼ Beta(0, 1, ν1/2, ν2/2).

2. More generally, Z = W1/(W1 + W2) ∼ Beta(0, 1, p1, p2) if Wj ∼ Gamma(0, σ, pj), for
any scale, σ.

3. If Z1, Z2, . . . , Zn ∼ Uniform(0, 1) are sorted to give the corresponding order statistics
Z(1), Z(2), . . . , Z(n), then the rth order statistic, Z(r) ∼ Beta(0, 1, r, n− r + 1).
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Burr3(A,B,C) y > 0, A,B,C > 0

0 1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Y

P
D

F

H1, 2, 1L

H2, 3, 2L

PDF =
BC

A

( y
A

)−B−1 [
1 +

( y
A

)−B]−C−1
CDF =

[
1 +

( y
A

)−B]−C
CF = no simple closed form

Parameters – A: Scale, B, C: Shape

Moments, etc. [µr ≡ ArCBeta((BC + r)/B, (B − r)/B)]

Mean = µ1

Variance = −µ2
1 + µ2

Skewness = 2µ3
1 − 3µ1µ2 + µ3

Kurtosis = −3µ4
1 + 6µ2

1µ2 − 4µ1µ3 + µ4

Mode = A

(
BC − 1

B + 1

)1/B

Median = A
(
21/C − 1

)−1/B
Q1 = A

(
41/C − 1

)−1/B
Q3 = A

(
(4/3)1/C − 1

)−1/B
RandVar = A

(
u−1/C − 1

)−1/B
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Notes

1. Moment r exists iff B > r.

Aliases and Special Cases

1. The Burr III distribution is also called the Dagum distribution or the inverse Burr distribu-
tion.

Characterizations

1. If Y ∼ Burr XII, then 1/Y ∼ Burr III.

2. Burr distributions are often used when there is a need for a flexible, left-bounded, continuous
model.
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Burr12(A,B,C) y > 0, A,B,C > 0
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0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Y

P
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F

H1, 2, 1L

H4, 3, 4L

PDF =
BC

A

( y
A

)B−1 [
1 +

( y
A

)B]−C−1
CDF = 1−

[
1 +

( y
A

)B]−C
CF = no simple closed form

Parameters – A: Scale, B, C: Shape

Moments, etc. [µr ≡ ArCBeta((BC − r)/B, (B + r)/B)]

Mean = µ1

Variance = −µ2
1 + µ2

Skewness = 2µ3
1 − 3µ1µ2 + µ3

Kurtosis = −3µ4
1 + 6µ2

1µ2 − 4µ1µ3 + µ4

Mode = A

(
B − 1

BC + 1

)1/B

Median = A
(
21/C − 1

)1/B
Q1 = A

(
(4/3)1/C − 1

)1/B
Q3 = A

(
41/C − 1

)1/B
RandVar = A

(
u−1/C − 1

)1/B
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Notes

1. Moment r exists iff B C > r.

Aliases and Special Cases

1. The Burr XII distribution is also called the Singh-Maddala distribution or the generalized
log-logistic distribution.

2. When B = 1, the Burr XII distribution becomes the Pareto II distribution.

3. When C = 1, the Burr XII distribution becomes a special case of the Fisk distribution.

Characterizations

1. This distribution is often used to model incomes and other quantities in econometrics.

2. Burr distributions are often used when there is a need for a flexible, left-bounded, continuous
model.
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Chi(A,B,C) y > A, B,C > 0
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0.0

0.2

0.4

0.6
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P
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H0, 1, 1L

H0, 1, 2L

H0, 1, 3L

PDF =
21−C/2

Γ(C/2)

(
y − A
B

)C−1
exp

(
−(y − A)2

2B2

)

CDF = 1−
Γ
(
C
2
, (y−A)

2

2B2

)
Γ(C/2)

CF = exp(iAt)
[
1F1

(
C/2, 1/2,−(B2t2)/2

)
+

i
√

2B tΓ((C + 1)/2)

Γ(C/2)
1F1

(
(C + 1)/2, 3/2,−(B2t2)/2

) ]
Parameters – A: Location, B: Scale, C (ν): Shape (also, degrees of freedom)

Moments, etc.
[
γ ≡ Γ

(
c+1
2

)
, δ ≡ Γ

(
c
2

)]
Mean = A+

√
2B

γ

δ

Variance = B2

[
C − 2

γ2

δ2

]
Skewness =

√
2B3γ [(1− 2C)δ2 + 4γ2]

δ3

Kurtosis =
B4 [C(C + 2)δ4 + 4(C − 2)γ2δ2 − 12γ4]

δ4

29



Mode = A+B
√
C − 1

Median, Q1, Q3 : no simple closed form

Notes

Aliases and Special Cases

1. Chi(A, B, 1) is the HalfNormal distribution.

2. Chi(0, B, 2) is the Rayleigh distribution.

3. Chi(A, B, 3) is the Maxwell distribution.

Characterizations

1. If Y ∼Chi-square, its positive square root is ∼Chi.

2. If X, Y ∼Normal(0, B), the distance from the origin to the point (X, Y) is ∼Rayleigh.

3. In a spatial pattern generated by a Poisson process, the distance between any pattern element
and its nearest neighbor is ∼Rayleigh.

4. The speed of a random molecule, at any temperature, is ∼Maxwell.
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ChiSquare(A) y > 0, A > 0
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2A/2 exp(y/2) Γ(A/2)

CDF = 1− Γ(A/2, y/2)

Γ(A/2)

CF = (1− 2it)−A/2

Parameters – A (ν): Shape (degrees of freedom)

Moments, etc.
Mean = A

Variance = 2A

Skewness = 8A

Kurtosis = 12A(A+ 4)

Mode = A− 2 ; A ≥ 2, else 0

Median, Q1, Q3 : no simple closed form
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Notes

1. In general, parameter A need not be an integer.

Aliases and Special Cases

1. The Chi Square distribution is just a special case of the Gamma distribution and is included
here purely for convenience.

Characterizations

1. If Z1, Z2, . . . , ZA ∼Normal(0, 1), then W =
∑A

k=1 Z
2 ∼ChiSquare(A).
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Exponential(A,B) y ≥ A, B > 0
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PDF =
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exp

(
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CDF = 1− exp

(
A− y
B

)
CF =

exp(iAt)

1− iBt
Parameters – A: Location, B: Scale

Moments, etc.
Mean = A+B

Variance = B2

Skewness = 2B3

Kurtosis = 9B4

Mode = A

Median = A+B log(2)

Q1 = A+B log

(
4

3

)
Q3 = A+B log(4)

RandVar = A−B log(u)
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Notes

1. The one-parameter version of this distribution, Exponential(0, B), is far more common than
the general parametrization shown here.

Aliases and Special Cases

1. The Exponential distribution is sometimes called the Negative exponential distribution.

2. The discrete analogue of the Exponential distribution is the Geometric distribution.

Characterizations

1. If the future lifetime of a system at any time, t, has the same distribution for all t, then
this distribution is the Exponential distribution. This behavior is known as the memoryless
property.
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Fisk(A,B,C) y > A, B,C > 0
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1 +

(
y − A
B

)C]−2

CDF =
1

1 +
(
y−A
B

)−C
CF = no simple closed form

Parameters – A: Location, B: Scale, C: Shape

Moments, etc. (see Note #4)

Mean = A+
πB

C
csc
( π
C

)
Variance =

2πB2

C
csc

(
2π

C

)
− π2B2

C2
csc
( π
C

)2
Skewness =

2π3B3

C3
csc
( π
C

)3
− 6π2B3

C2
csc
( π
C

)
csc

(
2π

C

)
+

3πB3

C
csc

(
3π

C

)
Kurtosis =− 3π4B4

C4
csc
( π
C

)4
+

12π3B4

C3
csc
( π
C

)2
csc

(
2π

C

)
− 12π2B4

C2
csc
( π
C

)
csc

(
3π

C

)
+

4πB4

C
csc

(
4π

C

)
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Mode = A+B C

√
C − 1

C + 1

Median = A+B

Q1 = A+
B
C
√

3
Q3 = A+B

C
√

3

RandVar = A+B C

√
u

1− u
Notes

1. The Fisk distribution is right-skewed.

2. To model a left-skewed distribution, try modeling w = −y.

3. The Fisk distribution is related to the Logistic distribution in the same way that a LogNormal
is related to the Normal distribution.

4. Moment r exists iff C > r.

Aliases and Special Cases

1. The Fisk distribution is also known as the LogLogistic distribution.

Characterizations

1. The Fisk distribution is often used in income and lifetime analysis.
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FoldedNormal(A,B) y ≥ A ≥ 0, B > 0

PDF =
1

B
√

2π

[
exp

(
−(y − A)2

2B2

)
+ exp

(
−(y + A)2

2B2

)]
CDF = Φ

(
A+ y

B

)
− Φ

(
A− y
B

)
CF = exp

(
−2iAt−B2t2

2

)[
1− Φ

(
A− iB2t

B

)
+ exp(2iAt) Φ

(
A+ iB2t

B

)]
Parameters – A (µ): Location, B (σ): Scale, both for the corresponding unfolded Normal

Moments, etc.

Mean = B

√
2

π
exp

(
− A2

2B2

)
− A

[
2 Φ

(
A

B

)
− 1

]
Variance = A2 +B2 −Mean2

Skewness = 2 Mean3 − 3
(
A2 +B2

)
Mean +B

(
A2 + 2B2

)√ 2

π
exp

(
− A2

2B2

)
+

(
A3 + 3AB2

) [
2 Φ

(
A

B

)
− 1

]
Kurtosis =A4 + 6A2B2 + 3B4 + 6

(
A2 +B2

)
Mean2 − 3 Mean4−

4 Mean

[
B
(
A2 + 2B2

)√ 2

π
exp

(
− A2

2B2

)
+
(
A3 + 3AB2

) [
2 Φ

(
A

B

)
− 1

]]
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Mode, Median, Q1, Q3 : no simple closed form

Notes

1. This distribution is indifferent to the sign of A so, to avoid ambiguity, Regress+ restricts A
to be positive.

2. Mode > 0 when A > B.

Aliases and Special Cases

1. If A = 0, the FoldedNormal distribution reduces to the HalfNormal distribution.

2. The FoldedNormal distribution is identical to the distribution of χ’ (Non-central Chi) with
one degree of freedom and non-centrality parameter (A/B)2.

Characterizations

1. If Z ∼Normal(A, B), |Z| ∼FoldedNormal(A, B).
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Gamma(A,B,C) y > A, B,C > 0
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PDF =
1

B Γ(C)

(
y − A
B

)C−1
exp

(
−y − A

B

)

CDF = 1−
Γ
(
C, y−A

B

)
Γ(C)

CF = exp(iAt)(1− iBt)−C

Parameters – A: Location, B (β): Scale, C (α): Shape

Moments, etc.
Mean = A+BC

Variance = B2C

Skewness = 2B3C

Kurtosis = 3B4C(C + 2)

Mode = A+B(C − 1) ; C ≥ 1, else 0

Median, Q1, Q3 : no simple closed form
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Notes

1. The Gamma distribution is right-skewed.

2. To model a left-skewed distribution, try modeling w = −y.

Aliases and Special Cases

1. Gamma(0, B, C), where C is an integer > 0, is the Erlangdistribution.

2. Gamma(A, B, 1) is the Exponental distribution.

3. Gamma(0, 2, ν/2) is the Chi-square distribution with ν degrees of freedom.

4. The Gamma distribution approaches a Normal distribution in the limit C →∞.

Characterizations

1. If Z1, Z2, . . . , Zν ∼Normal(0, 1), then W =
∑ν

k=1 Z
2
k ∼Gamma(0, 2, ν/2).

2. If Z1, Z2, . . . , Zn ∼Exponential(A, B), then W =
∑n

k=1 Zk ∼Erlang(A, B, n).

3. If Z1 ∼Gamma(A, B, C1) and Z2 ∼Gamma(A, B, C2), then
(Z1 + Z2) ∼Gamma(A, B, C1 + C2).
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GenLogistic(A,B,C) B,C > 0
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PDF =
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B
exp

(
−y − A

B

)[
1 + exp

(
−y − A

B

)]−C−1

CDF =

[
1 + exp

(
−y − A

B

)]−C
CF =

exp(iAt)
Γ(C)

Γ(1− iBt) Γ(C + iBt)

Parameters – A: Location, B: Scale, C: Shape

Moments, etc.
Mean = A+ [γ + ψ(C)]B

Variance =

[
π2

6
+ ψ′(C)

]
B2

Skewness = [ψ′′(C)− ψ′′(1)]B3

Kurtosis =

[
ψ′′′(C) + ψ′(C)

[
π2 + 3ψ′(C)

]
+

3π4

20

]
B4

Mode = A+B log(C)
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Median = A−B log
(

C
√

2− 1
)

Q1 = A−B log
(

C
√

4− 1
)

Q3 = A−B log
(

C
√

4/3− 1
)

RandVar = A−B log

(
1

C
√
u
− 1

)
Notes

1. This distribution is Type I of several generalizations of the Logistic distribution.

2. It is left-skewed when C < 1 and right-skewed when C > 1.

Aliases and Special Cases

1. This distribution is also known as the skew-logistic distribution.

Characterizations

1. This distribution has been used in the analysis of extreme values.

42



Gumbel(A,B) B > 0
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exp
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A− y
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exp

[
− exp

(
A− y
B

)]

CDF = exp

[
− exp

(
A− y
B

)]
CF = exp(iAt) Γ(1− iBt)

Parameters – A: Location, B: Scale

Moments, etc.
Mean = A+Bγ

Variance =
(πB)2

6

Skewness = 2 ζ(3)B3

Kurtosis =
3(πB)4

20

Mode = A

Median = A−B log(log(2))

Q1 = A−B log(log(4)) Q3 = A−B log(log(4/3))

RandVar = A−B log(− log(u))
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Notes

1. The Gumbel distribution is one of the class of extreme-value distributions.

2. It is right-skewed.

3. To model the analogous left-skewed distribution, try modeling w = −y.

Aliases and Special Cases

1. The Gumbel distribution is sometimes called the LogWeibull distribution.

2. It is also known as the Gompertz distribution.

3. It is also known as the Fisher-Tippett distribution.

Characterizations

1. Extreme-value distributions are the limiting distributions, as N→ ∞, of the greatest value
among N i.i.d. variates selected from a continuous distribution. By replacing y with −y, the
smallest values may be modeled.

2. The Gumbel distribution is often used to model maxima from samples (of the same size) in
which the variate is unbounded.
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HalfNormal(A,B) y ≥ A, B > 0
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CDF = 2 Φ
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)
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CF = exp

(
iAt− B2t2

2

)[
1 + erf

(
iBt√

2

)]
Parameters – A: Location, B: Scale

Moments, etc.

Mean = A+B

√
2

π

Variance =

(
1− 2

π

)
B2

Skewness =

√
2

π

(
4

π
− 1

)
B3

Kurtosis = ((π(3π − 4)− 12)
B4

π2
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Mode = A

Median ≈ A+ 0.67449B

Q1 ≈ A+ 0.31864B Q3 ≈ A+ 1.15035B

Notes

1. The HalfNormal distribution is used in place of the Normal distribution when only the mag-
nitudes (absolute values) of observations are available.

Aliases and Special Cases

1. The HalfNormal distribution is a special case of both the Chi and the FoldedNormal distri-
butions.

Characterizations

1. If X ∼Normal(A, B) is folded (to the right) about its mean, A, the resulting distribution is
HalfNormal(A, B).
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InverseGamma(A,B) y > 0, A,B > 0
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Γ
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CF =
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KB
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)
Parameters – A: Scale, B: Shape

Moments, etc.
Mean =

A

B − 1

Variance =
A2

(B − 2)(B − 1)2

Skewness =
4A3

(B − 3)(B − 2)(B − 1)3

Kurtosis =
3 (B + 5)A4

(B − 4)(B − 3)(B − 2)(B − 1)4
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Mode =
A

B + 1

Median, Q1, Q3 : no simple closed form

Notes

1. Moment r exists iff B > r.

Aliases and Special Cases

1. The InverseGamma distribution is a special case of the Pearson (Type 5) distribution.

Characterizations

1. If X ∼Gamma(0, β, γ), then 1/X ∼InverseGamma(1/β, γ).
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InverseNormal(A,B) y > 0, A,B > 0
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−

√
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CF = exp
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B
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√
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Parameters – A: Location and scale, B: Scale

Moments, etc.
Mean = A

Variance =
A3

B

Skewness =
3A5

B2

Kurtosis =
15A7

B3
+

3A6

B2
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Mode =
A

2B

(√
9A2 + 4B2 − 3A

)
Median, Q1, Q3 : no simple closed form

Notes

Aliases and Special Cases

1. The InverseNormal distribution is also called the Wald distribution.

Characterizations

1. If Xi ∼InverseNormal(A, B), then
∑n

i=1Xi ∼InverseNormal(nA, n2B).

2. If X ∼InverseNormal(A, B), then kX ∼InverseNormal(kA, kB).
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Lévy(A,B) y ≥ A, B > 0
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CF = exp
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−2iBt

)
Parameters – A (µ): Location, B (σ): Scale

Moments, etc.
Moments do not exist.

Mode = A+
B

3

Median ≈ A+ 2.19811B

Q1 ≈ A+ 0.75568B Q3 ≈ A+ 9.84920B
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Notes

1. The Lévy distribution is one of the class of stable distributions.

Aliases and Special Cases

1. The Lévy distribution is sometimes called the Lévy alpha-stable distribution.

Characterizations

1. The Lévy distribution is sometimes used in financial modeling due to its long tail.
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Lindley(A) y > 0
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exp(−Ay)

CF =
A2(A+ 1− it)
(a+ 1)(a− it)2

Parameters – A: Scale

Moments, etc.
Mean =

A+ 2

A(A+ 1)

Variance =
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A2
− 1

(A+ 1)2

Skewness =
4

A3
− 2

(A+ 1)3

Kurtosis =
3 (8 + A(32 + A(44 + 3A(A+ 8))))

A4(A = 1)4

53



Mode =


1− A
A

, A ≤ 1

0, A > 1

Median, Q1, Q3 : no simple closed form

Notes

Aliases and Special Cases

Characterizations

1. The Lindley distribution is sometimes used in applications of queueing theory.
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LogNormal(A,B) y > 0, B > 0
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CDF = Φ
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)
CF = no simple closed form

Parameters – A (µ): Location, B (σ): Scale, both measured in log space

Moments, etc.

Mean = exp

(
A+

B2

2

)
Variance =

(
exp(B2)− 1

)
exp

(
2A+B2

)
Skewness =

(
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)2 (
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)
exp
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Kurtosis =
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) (
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(
B2
) (
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(
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)

+ 2
))]

Mode = exp
(
A−B2

)
Median = exp(A)
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Q1 ≈ exp(A− 0.67449B) Q3 ≈ exp(A+ 0.67449B)

Notes

1. There are several alternate forms for the PDF, some of which have more than two parameters.

2. Parameters A and B are the mean and standard deviation of y in (natural) log space. There-
fore, their units are similarly transformed.

Aliases and Special Cases

1. The LogNormal distribution is sometimes called the Cobb-Douglas distribution, especially
when applied to econometric data.

2. It is also known as the antilognormal distribution.

Characterizations

1. As the PDF suggests, the LogNormal distribution is the distribution of a random variable
which, in log space, is ∼Normal.
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Nakagami(A,B,C) y > A, B,C > 0
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)
Parameters – A: Location, B: Scale, C: Shape (also, degrees of freedom)

Moments, etc.

Mean = A+
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)
√
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]
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−
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+
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Mode = A+
B√

2

√
2C − 1

C

Median, Q1, Q3 : no simple closed form

Notes

1. The Nakagami distribution is usually defined only for y > 0.

2. Its scale parameter is also defined differently in many references.

Aliases and Special Cases

1. cf. Chi distribution.

Characterizations

1. The Nakagami distribution is a generalization of the Chi distribution.

2. It is sometimes used as an approximation to the Rice distribution.
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NoncentralChiSquare(A,B) y ≥ 0, A > 0, B > 0
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Parameters – A: Shape (degrees of freedom), B: Scale (noncentrality)

Moments, etc.
Mean = A+B

Variance = 2(A+ 2B)

Skewness = 8(A+ 3B)

Kurtosis = 12
(
A2 + 4A(1 +B) + 4B(4 +B)

)
Mode, Median, Q1, Q3 : no simple closed form
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Notes

1. Noncentrality is a parameter common to many distributions.

Aliases and Special Cases

1. As B → 0, the NoncentralChiSquare distribution becomes the ChiSquare distribution.

Characterizations

1. The NoncentralChiSquare distribution describes the sum of squares ofXi ∼ Normal(µi,1)
where i = 1 . . . A.
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Pareto1(A,B) 0 < A ≤ y, B > 0
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Parameters – A: Location and scale, B: Shape

Moments, etc.
Mean =
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Variance =
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Skewness =
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(B − 3)(B − 2)(B − 1)3
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Mode = A
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Median = A
B
√

2

Q1 = A
B

√
4

3
Q3 = A

B
√

4

RandVar =
A
B
√
u

Notes

1. Moment r exists iff B > r.

2. The name Pareto is applied to a class of distributions.

Aliases and Special Cases

Characterizations

1. The Pareto distribution is often used as an income distribution. That is, the probability that
a random income in some defined population exceeds a minimum, A, is ∼Pareto.
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Pareto2(A,B,C) y ≥ C, A,B > 0
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y + A− C

)B+1

CDF = 1−
(

A

y + A− C

)B
CF = B (−iAy)B exp (iy(C − A)) Γ(−b,−iAy)

Parameters – A: Scale, B: Shape, C: Location

Moments, etc.
Mean =

A

B − 1
+ C

Variance =
A2B

(B − 2)(B − 1)2

Skewness =
2A3B(B + 1)

(B − 3)(B − 2)(B − 1)3

Kurtosis =
3A4B(3B2 +B + 2)

(B − 4)(B − 3)(B − 2)(B − 1)4

Mode = A
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Median = A
(

B
√

2− 1
)

+ C

Q1 = A

(
B

√
4

3
− 1

)
+ C Q3 = A

(
B
√

4− 1
)

+ C

RandVar = A

(
1

B
√
u
− 1

)
+ C

Notes

1. Moment r exists iff B > r.

2. The name Pareto is applied to a class of distributions.

Aliases and Special Cases

Characterizations

1. The Pareto distribution is often used as an income distribution. That is, the probability that
a random income in some defined population exceeds a minimum, A, is ∼Pareto.
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Reciprocal(A,B) 0 < A ≤ y ≤ B

0 10 20 30 40 50
0.00

0.05

0.10

0.15

0.20

Y

PD
F !1, 100"

PDF =
1

y log
(
B
A

)
CDF =

log(y)

log
(
B
A

)
CF =

Ei(iBt)− Ei(iAt)

log
(
B
A

)
Parameters – A, B: Shape

Moments, etc. d = log
(
B
A

)
Mean =

B − A
d

Variance =
(B − A)(d(A+B) + 2(A−B))

2 d2

Skewness =
2d2 (B3 − A3)− 9d(A+B)(A−B)2 − 12(A−B)3

6 d3

Kurtosis =
3d3 (B4 − A4)− 16d2 (A2 + AB +B2) (A−B)2 − 36d(A+B)(A−B)3 − 36(A−B)4

12d4
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Mode = A

Median =

√
B

A

Q1 =

(
B

A

)1/4

Q3 =

(
B

A

)3/4

RandVar =

(
B

A

)u
Notes

1. The Reciprocal distribution is unusual in that is has no conventional location or shape pa-
rameter.

Aliases and Special Cases

Characterizations

1. The Reciprocal distribution is often used to descrobe 1/f noise.
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Rice(A,B) y > 0, A ≥ 0, B > 0

0 2 4 6 8 10 12
0.00

0.05

0.10

0.15

0.20
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Y

PD
F

!1, 2"

!2, 3"

PDF =
y

B2
exp

(
−y

2 + A2

2B2

)
I0

(
Ay

B2

)

CDF = 1−Q1

(
A

B
,
y

B

)
CF = no simple closed form

Parameters – A: Shape (noncentrality), B: Scale

Moments, etc. f = L1/2

(
− A2

2B2

)
Mean = B

√
π

2
f

Variance = A2 + 2B2 − πB2

2
f 2

Skewness = B3

√
π

2

[(
−6− 3A2

2B2

)
f + π f 3 + 3L3/2

(
− A2

2B2

)]
Kurtosis = A4 + 8A2B2 + 8B4 +

3πB2

4
f

[
4
(
A2 + 2B2

)
f − πB2f 3 − 8B2 L3/2

(
− A2

2B2

)]
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Mode, Median, Q1, Q3 : no simple closed form

Notes

1. Noncentrality is a parameter common to many distributions.

Aliases and Special Cases

1. The Rice distribution is often called the Rician distribution.

2. When A = 0, the Rice distribution becomes the Rayleigh distribution.

Characterizations

1. The Rice distribution may be considered a noncentral Chi disribution with two degrees of
freedom.

2. If X ∼Normal(m1, B) and Y ∼Normal(m2, B), the distance from the origin to (X, Y)
∼Rice(

√
m2

1 +m2
2, B).

3. In communications theory, the Rice distribution is often used to describe the combined power
of signal plus noise with the noncentrality parameter corresponding to the signal. The noise
would then be ∼Rayleigh.
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SkewLaplace(A,B,C) B,C > 0

!5 0 5 10 15 20
0.00

0.05

0.10

0.15

0.20
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Y

PD
F

!2, 1, 3"

PDF =
1

B + C


exp

(
y − A
B

)
, y ≤ A

exp

(
A− y
C

)
, y > A

CDF =


B

B + C
exp

(
y − A
B

)
, y ≤ A

1− C

B + C
exp

(
A− y
C

)
, y > A

CF =
exp(iAt)

(Bt− i)(Ct+ i)

Parameters – A: Location, B, C: Scale

Moments, etc.
Mean = A−B + C

Variance = B2 + C2

Skewness = 2 (C3 −B3)

Kurtosis = 9B4 + 6B2C2 + 9C4

Mode = A
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Median,Q1,Q3 : vary with skewness

RandVar =


A+B log ((B + C)u/B) , u ≤ B

B + C

A− C log ((B + C)(1− u)/C) , u >
B

B + C

Notes

1. Skewed variants of standard distributions are common. This form is just one possibility.

2. In this form of the SkewLaplace distribution, the skewness is controlled by the relative size
of the scale parameters.

Aliases and Special Cases

Characterizations

1. The SkewLaplace distribution is used to introduce asymmetry into the Laplace distribution.
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SkewNormal(A,B,C) B > 0

1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6
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PD
F

!2, 1, 3"

PDF =
1

B

√
2

π
exp

(
−(y − A)2

2B2

)
Φ

(
C (y − A)

B

)

CDF = Φ

(
y − A
B

)
− 2 OwenT

(
y − A
B

,C

)
CF = exp

(
iAt− B2t2

2

)[
1 + erf

(
iBCt√

2
√

1 + C2

)]
Parameters – A: Location, B, C: Scale

Moments, etc.

Mean = A+
C√

1 + C2

√
2

π
B

Variance =

[
1− 2C2

π (1 + C2)

]
B2

Skewness =

√
2 (π − 4)C3

π3/2 (1 + C2)3/2
B3

Kurtosis =
6π C2(π − 2) + 3 π2 + (π (3π − 4)− 12)C4

π2 (1 + C2)2
B4

71



Mode, Median, Q1, Q3 : no simple closed form

Notes

1. Skewed variants of standard distributions are common. This form is just one possibility.

2. Here, skewness has the same sign as parameter C.

Aliases and Special Cases

1. This variant of the SkewNormal distribution is sometimes called the Azzalini skew normal
form.

Characterizations

1. The SkewNormal distribution is used to introduce asymmetry into the Normal distribution.

2. When C = 0, the SkewNormal distribution becomes the Normal distribution.
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Triangular(A,B,C) A ≤ y,C ≤ B

!4 !2 0 2 4
0.00

0.05
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0.15
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F

!!4, 4, 2"

PDF =


2 (y − A)

(B − A)(C − A)
, y ≤ C

2 (B − y)

(B − A)(B − C)
, y > C

CDF =


(y − A)2

(B − A)(C − A)
, y ≤ C

1− (B − y)2

(B − A)(B − C)
, y > C

CF =
2 ((a− b) exp(ict) + exp(iat)(b− c) + (c− a) exp(ibt))

(b− a)(a− c)(b− c) t2

Parameters – A: Location, B: Scale (upper bound), C: Shape (mode)

Moments, etc.
Mean =

1

3
(A+B + C)

Variance =
1

18

(
A2 − A(B + C) +B2 −BC + C2

)
Skewness =

1

270
(A+B − 2C)(2A−B − C)(A− 2B + C)

Kurtosis =
1

135

(
A2 − A(B + C) +B2 −BC + C2

)2
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Mode = C

Median =


A+

1√
2

√
(B − A)(C − A),

A+B

2
≤ C

B − 1√
2

√
(B − A)(B − C),

A+B

2
> C

Q1 =


A+

1

2

√
(B − A)(C − A),

1

4
≤ C − A
B − A

B −
√

3

2

√
(B − A)(B − C),

1

4
>
C − A
B − A

Q3 =


A+

√
3

2

√
(B − A)(C − A),

3

4
≤ C − A
B − A

B − 1

2

√
(B − A)(B − C),

3

4
>
C − A
B − A

RandVar =


A+

√
u (B − A)(C − A), u ≤ C − A

B − A

B −
√

(1− u)(B − A)(B − C), u >
C − A
B − A

Notes

Aliases and Special Cases

Characterizations

1. If X ∼Uniform(a, b) and Z ∼Uniform(c, d) and (b - a) = (d - c), then
(X + Z) ∼Triangular(a + c, b + d, (a + b + c + d)/2).

2. The Triangular distribution is often used in simulations of bounded data with very little prior
information.

74



Weibull(A,B,C) y > A B,C > 0

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Y

PD
F

!1, 1, 1"

!1, 2, 3"

PDF =
C

B

(
y − A
B

)C−1
exp

[
−
(
y − A
B

)C]

CDF = 1− exp

[
−
(
y − A
B

)C]
CF = no simple closed form

Parameters – A: Location, B: Scale, C:Shape

Moments, etc. G(n) = Γ
(
C+n
C

)
Mean = A+BG(1)

Variance =
[
−G2(1) +G(2)

]
B2

Skewness =
[
2G3(1)− 3G(1)G(2) +G(3)

]
B3

Kurtosis =
[
−3G4(1) + 6G2(1)G(2)− 4G(1)G(3) +G(4)

]
B4

Mode =


A, C ≤ 1

A+B
C

√
C − 1

C
, C > 1
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Median = A+B C
√

log(2)

Q1 = A+B C
√

log(4/3) Q3 = A+B C
√

log(4)

RandVar = A+B C
√
− log(u)

Notes

1. The Weibull distribution is roughly symmetric for C near 3.6. When C is smaller/larger, the
distribution is left/right-skewed, respectively.

Aliases and Special Cases

1. The Weibull distribution is sometimes known as the Fréchet distribution.

2. Weibull(A,B,1) is the Exponential(A,B) distribution.

3. Weibull(0,1,2) is the Rayleigh distribution.

Characterizations

1. If X =
(
y−A
B

)C
is ∼Exponential(0,1), then y ∼Weibull(A,B,C). Thus, the Weibull distri-

bution is a generalization of the Exponential distribution.

2. The Weibull distribution is often used to model extreme events.
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Part III

Continuous: Mixtures

77



Distributions in this section are mixtures of two distributions. Except for the InvGammaLaplace
distribution, they are all component mixtures.
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Expo(A,B)&Expo(A,C) B,C > 0, 0 ≤ p ≤ 1

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

Y

PD
F

!0, 1, 2, 0.7"

PDF =
p

B
exp

(
A− y
B

)
+

1− p
C

exp

(
A− y
C

)

CDF = p

[
1− exp

(
A− y
B

)]
+ (1− p)

[
1− exp

(
A− y
C

)]
CF = exp(iAt)

(
p

1− iBt
+

1− p
1− iCt

)
Parameters – A: Location, B, C (λ1, λ2): Scale, p: Weight of component #1

Moments, etc.
Mean = A+ pB + (1− p)C

Variance = C2 + 2 pB(B − C)− p2(B − C)2
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Notes

1. Binary mixtures may require hundreds of datapoints for adequate optimization and, even
then, often have unusually wide confidence intervals, especially for parameter p.

2. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite
of two populations having parameters and weights as described above.
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HNormal(A,B)&Expo(A,C) B,C > 0, 0 ≤ p ≤ 1
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0.0
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PD
F

!0, 1, 2, 0.7"

PDF =
p

B

√
2

π
exp

(
−(y − A)2

2B2

)
+

1− p
C

exp

(
A− y
C

)

CDF = 1− 2 pΦ

(
A− y
B

)
− (1− p)

(
A− y
C

)
CF = exp(iAt)

[
p exp

(
−B

2t2

2

)
(1 + erf

(
iBt√

2

)
+

1− p
1− iCt

]
Parameters – A: Location, B, C: Scale, p: Weight of component #1

Moments, etc.

Mean = A+

√
2

π

[
pB + (1− p)C

]

Variance = pB2 + (1− p)C2 − 2

π

[
pB + (1− p)C

]2
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Notes

1. Binary mixtures may require hundreds of datapoints for adequate optimization and, even
then, often have unusually wide confidence intervals, especially for parameter p.

2. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite
of two populations having parameters and weights as described above.
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HNormal(A,B)&HNormal(A,C) B,C > 0, 0 ≤ p ≤ 1

0 1 2 3 4 5
0.0
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F

!0, 1, 2, 0.7"

PDF =

√
2

π

[
p

B
exp

(
−(y − A)2

2B2

)
+

1− p
C

exp

(
−(y − A)2

2C2

)]

CDF = 1− 2 pΦ

(
A− y
B

)
− 2 (1− p)Φ

(
A− y
C

)
CF = exp(iAt)

[
p exp

(
−B

2t2

2

)
(1 + erf

(
iBt√

2

)
+ (1− p) exp

(
−C

2t2

2

)
(1 + erf

(
iCt√

2

)]
Parameters – A: Location, B, C: Scale, p: Weight of component #1

Moments, etc.

Mean = A+

√
2

π

[
pB + (1− p)C

]

Variance = pB2 + (1− p)C2 − 2

π

[
pB + (1− p)C

]2
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Notes

1. Binary mixtures may require hundreds of datapoints for adequate optimization and, even
then, often have unusually wide confidence intervals, especially for parameter p.

2. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite
of two populations having parameters and weights as described above.

84



InverseGammaLaplace(A,B,C) B,C > 0

!5 !4 !3 !2 !1 0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

Y

PD
F

!0, 2, 3"

PDF =
C

2B

(
1 +
|y − A|
B

)−(C+1)

CDF =


1

2

(
1 +
|y − A|
B

)−C
, y ≤ A

1− 1

2

(
1 +
|y − A|
B

)−C
, y > A

CF = no simple closed form

Parameters – A: Location, B: Scale, C: Shape

Moments, etc.
Mean = A

Variance =
2 Γ(C − 2)

Γ(C)
B2
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Notes

1. Moment r exists iff C > r.

Aliases and Special Cases

Characterizations

1. The InverseGammaLaplace distribution is a parameter-mix distribution in which a Laplace
distribution has scale parameter, B (λ), modeled as ∼InverseGamma. This is symbolized

Laplace(µ, λ)
∧
λ

InverseGamma(A,B)

2. The analogous InverseGammaNormal distribution is StudentsT.

3. The InverseGammaLaplace distribution is essentially a reflected Pareto2 distribution.
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Laplace(A,B)&Laplace(C,D) B,D > 0, 0 ≤ p ≤ 1
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PDF =
p

2B
exp

(
−|y − A|

B

)
+

1− p
2D

exp

(
−|y − C|

D

)

CDF = p


1

2
exp

(
y − A
B

)
, y ≤ A

1− 1

2
exp

(
A− y
B

)
, y > A

+ (1− p)


1

2
exp

(
y − C
D

)
, y ≤ C

1− 1

2
exp

(
C − y
D

)
, y > C

CF =
p exp(iAt)

1 +B2 t2
+

(1− p) exp(iCt)

1 +D2 t2

Parameters – A, C (µ1, µ2): Location, B, D (λ1, λ2): Scale, p: Weight of component #1

Moments, etc.
Mean = pA+ (1− p)C

Variance = p
[
2B2 + (1− p)(A− C)2

]
+ 2 (1− p)D2
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Notes

1. Binary mixtures may require hundreds of datapoints for adequate optimization and, even
then, often have unusually wide confidence intervals, especially for parameter p.

2. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

1. This binary mixture is often referred to as the double double-exponential distribution.

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite
of two populations having parameters and weights as described above.
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Laplace(A,B)&Laplace(A,C) B,C > 0, 0 ≤ p ≤ 1
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PDF =
p

2B
exp

(
−|y − A|

B

)
+

1− p
2C

exp

(
−|y − A|

C

)

CDF =


1

2

[
p exp

(
y − A
B

)
+ (1− p) exp

(
y − A
C

)]
, y ≤ A

1

2

[
2− p exp

(
A− y
B

)
− (1− p) exp

(
A− y
C

)]
, y > A

CF = exp(iAt)

(
p

1 +B2 t2
+

(1− p)
1 + C2 t2

)
Parameters – A, C (µ): Location, B, C (λ1, λ2): Scale, p: Weight of component #1

Moments, etc.
Mean = A

Variance = 2
[
pB2 + (1− p)C2

]
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Notes

1. Binary mixtures may require hundreds of datapoints for adequate optimization and, even
then, often have unusually wide confidence intervals, especially for parameter p.

2. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

1. This is a special case of the Laplace(A,B)&Laplace(C,D) distribution.

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite
of two populations having parameters and weights as described above.
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Normal(A,B)&Laplace(C,D) B,D > 0, 0 ≤ p ≤ 1
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exp
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2B2

]
+

1− p
2D

exp

[
−|y − C|

D

]

CDF = pΦ

(
y − A
B

)
+ (1− p)


1

2
exp

(
y − C
D

)
, y ≤ C

1− 1

2
exp

(
C − y
D

)
, y > C

CF = p exp

(
iAt− B2t2

2

)
+

(1− p) exp(iCt)

1 +D2 t2

Parameters – A, C (µ1, µ2): Location, B, D (σ, λ): Scale, p: Weight of component #1

Moments, etc.
Mean = pA+ (1− p)C

Variance = p
[
B2 + (1− p)(A− C)2

]
+ 2 (1− p)D2
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Notes

1. Binary mixtures may require hundreds of datapoints for adequate optimization and, even
then, often have unusually wide confidence intervals, especially for parameter p.

2. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite
of two populations having parameters and weights as described above.
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Normal(A,B)&Laplace(A,C) B,C > 0, 0 ≤ p ≤ 1
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+
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exp
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CDF = pΦ
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y − A
B

)
+ (1− p)


1

2
exp

(
y − A
C

)
, y ≤ A

1− 1

2
exp

(
A− y
C

)
, y > A

CF = exp(iAt)

[
p exp

(
−B

2t2

2

)
+

(1− p)
1 + C2 t2

]
Parameters – A (µ): Location, B, C (σ, λ): Scale, p: Weight of component #1

Moments, etc.
Mean = pA+ (1− p)C

Variance = pB2 + 2 (1− p)C2
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Notes

1. Binary mixtures may require hundreds of datapoints for adequate optimization and, even
then, often have unusually wide confidence intervals, especially for parameter p.

2. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

1. This is a special case of the Normal(A,B)&Laplace(C,D) distribution.

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite
of two populations having parameters and weights as described above.
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Normal(A,B)&Normal(C,D) B,D > 0, 0 ≤ p ≤ 1
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exp
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CDF = pΦ
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y − A
B
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+ (1− p) Φ

(
y − C
D

)
CF = p exp

(
iAt− B2t2

2

)
+ (1− p) exp

(
iCt− D2t2

2

)
Parameters – A, C (µ1, µ2): Location, B, D (σ1, σ2): Scale, p: Weight of component #1

Moments, etc.
Mean = pA+ (1− p)C

Variance = p
[
B2 + (1− p)(A− C)2

]
+ (1− p)D2
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Notes

1. Binary mixtures may require hundreds of datapoints for adequate optimization and, even
then, often have unusually wide confidence intervals, especially for parameter p.

2. Warning! Mixtures usually have several local optima.

3. Whether or not this mixture is bimodal depends partly on parameter p. Obviously, if p is
small enough, it will be unimodal regardless of the remaining parameters. If

(A− C)2 >
8B2D2

B2 +D2

then there will be some values of p for which this mixture is bimodal. However, if

(A− C)2 <
27B2D2

4 (B2 +D2)

then it will be unimodal.

Aliases and Special Cases

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite
of two populations having parameters and weights as described above.
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Normal(A,B)&Normal(A,C) B,C > 0, 0 ≤ p ≤ 1
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p

B
√

2π
exp

[
−(y − A)2

2B2

]
+

1− p
C
√

2π
exp

[
−(y − A)2

2C2

]

CDF = pΦ

(
y − A
B

)
+ (1− p) Φ

(
y − A
C

)
CF = exp(iAt)

[
p exp

(
−B

2t2

2

)
+ (1− p) exp

(
−C

2t2

2

)]
Parameters – A (µ): Location, B, C (σ1, σ2): Scale, p: Weight of component #1

Moments, etc.
Mean = A

Variance = pB2 + (1− p)C2
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Notes

1. Binary mixtures may require hundreds of datapoints for adequate optimization and, even
then, often have unusually wide confidence intervals, especially for parameter p.

2. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

1. This is a special case of the Normal(A,B)&Normal(C,D) distribution.

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite
of two populations having parameters and weights as described above.
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Normal(A,B)&StudentsT(A,C,D) B,C,D > 0, 0 ≤ p ≤ 1
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exp
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+

1− p
C
√
DBeta

(
D
2
, 1
2

) [1 +
(y − A)2

C2D

]−(D+1)/2

CDF = pΦ

(
y − A
B

)
+ (1− p)


Γ ((D + 1)/2)

2
√
π Γ (D/2)

Beta

(
z2

D + z2
;
D

2
,
1

2

)
, z ≤ 0

1

2
+

Γ ((D + 1)/2)

2
√
π Γ (D/2)

Beta

(
z2

D + z2
;
1

2
,
D

2

)
, z > 0

where z =
y − A
C

CF = exp(iAt)

[
p exp

(
−B

2t2

2

)
+ (1− p) (C|t|)D/2DD/4

2(D−2)/2 Γ(D/2)
KD/2(C |t|

√
D)

]
Parameters – A (µ): Location, B, C: Scale, D: Shape p: Weight of component #1

Moments, etc.
Mean = A

Variance = pB2 +
(1− p)D
D − 2

C2
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Notes

1. Moment r exists iff D > r.

2. Binary mixtures may require hundreds of datapoints for adequate optimization and, even
then, often have unusually wide confidence intervals, especially for parameter p.

3. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite
of two populations having parameters and weights as described above.
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Part IV

Discrete: Standard
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This section contains six discrete distributions, “discrete” meaning that their support includes
only the positive integers.
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Binomial(A,B) y = 0, 1, 2, . . . ,B > 0, 0 < A < 1
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PDF =
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)
Ay(1− A)B−y

CDF =

(
B

y

)
(B − y)Beta(1− A;B − y, y + 1)

CF = [1− A(1− exp(it))]B

Parameters – A (p): Prob(success), B (n): Number of Bernoulli trials

Moments, etc.
Mean = AB

Variance = A(1− A)B

Mode = bA(B + 1)c
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Notes

1. If A(B + 1) is an integer, then Mode also equals A(B + 1)− 1.

Aliases and Special Cases

1. Binomial(A,1) is called the Bernoulli distribution.

Characterizations

1. In a sequence of B independent (‘Bernoulli’) trials with Prob(success) = A, the probability
of exactly y successes is ∼Binomial(A,B).
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Geometric(A) y = 0, 1, 2, . . . , 0 < A < 1
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PDF = A(1− A)y

CDF = 1− (1− A)y+1

CF =
A

1− (1− A) exp(it)

Parameters – A (p): Prob(success)

Moments, etc.
Mean =

1− A
A

Variance =
1− A
A2

Mode = 0
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Notes

1. The Geometric distribution is the discrete analogue of the Exponential distribution.

2. There is an alternate form of this distribution which takes values starting at 1. See below.

Aliases and Special Cases

1. The Geometric distribution is sometimes called the Furry distribution.

Characterizations

1. In a series of Bernoulli trials with Prob(success) = A, the number of failures preceding the
first success is ∼Geometric(A).

2. In the alternate form cited above, it is the number of trials needed to realize the first success.
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Logarithmic(A) y = 1, 2, 3, . . . , 0 < A < 1
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y log(1− A)

CDF = 1 +
Beta(A, y + 1, 0)

log(1− A)

CF =
1− A exp(it)

log(1− A)

Parameters – A (p): Shape

Moments, etc.
Mean =

A

(A− 1) log(1− A)

Variance =
A (A+ log(1− A))

(A− 1)2 log2(1− A)

Mode = 1
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Notes

Aliases and Special Cases

1. The Logarithmic distribution is sometimes called the Logarithmic Series distribution or the
Log-series distribution.

Characterizations

1. The Logarithmic distribution has been used to model the number of items of a product pur-
chased by a buyer in a given period of time.
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NegativeBinomial(A,B) 0 < y = B,B + 1,B + 2, . . . , 0 < A < 1
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AB(1− A)y−B

CDF = 1−
(

y

B − 1

)
2F1(1, y + 1; y −B + 2; 1− A)AB(1− A)y−B+1

CF = exp(iBt)AB [1 + (A− 1) exp(it)]−B

Parameters – A (p): Prob(success), B (k): a constant, target number of successes

Moments, etc.
Mean =

B

A

Variance =
(1− A)B

A2

Mode =

⌊
A+B − 1

A

⌋
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Notes

1. If (B − 1)/A is an integer, then Mode also equals (B − 1)/A.

Aliases and Special Cases

1. The NegativeBinomial distribution is also known as the Pascal distribution.

2. It is also called the Polya distribution.

3. If B = 1, the NegativeBinomial distribution becomes the Geometric distribution.

Characterizations

1. If Prob(success) = A, the number of Bernoulli trials required to realize the Bth success is
∼NegativeBinomial(A,B).
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Poisson(A) y = 0, 1, 2, . . . , A > 0
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exp(−A)

CDF =
Γ(1 + byc, A)

Γ(1 + byc)
CF = exp [A (exp(it)− 1)]

Parameters – A (λ): Expectation

Moments, etc.
Mean = Variance = A

Mode = bAc
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Notes

1. If A is an integer, then Mode also equals A− 1.

Aliases and Special Cases

Characterizations

1. The Poisson distribution is often used to model rare events. As such, it is a good approxima-
tion to Binomial(A,B) when, by convention, AB < 5.

2. In queueing theory, when interarrival times are ∼Exponential, the number of arrivals in a
fixed interval is ∼Poisson.

3. Errors in observations with integer values (i.e., miscounting) are ∼Poisson.
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Zipf(A) y = 1, 2, 3, . . . , A > 0
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Parameters – A: Shape

Moments, etc.

Mean =
ζ(A)

ζ(A+ 1)

Variance =
ζ(A+ 1)ζ(A− 1)− ζ2(A)

ζ2(A+ 1)

Mode = 1
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Notes

1. Moment r exists iff A > r.

Aliases and Special Cases

1. The Zipf distribution is sometimes called the discrete Pareto distribution.

Characterizations

1. The Zipf distribution is used to describe the rank, y, of an ordered item as a function of the
item’s frequency.
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Part V

Discrete: Mixtures
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This section includes six binary component mixtures of discrete distributions.
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Binomial(A,C)&Binomial(B,C) y = 0, 1, 2, . . . ,C > 0, 0 < A,B < 1, 0 ≤ p ≤ 1
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pAy(1− A)C−y + (1− p)By(1−B)C−y

]
CDF =

(
C

y

)
(C − y)[pBeta(1− A;C − y, y + 1) + (1− p)Beta(1−B;C − y, y + 1)]

CF = p [1− A(1− exp(it))]C + (1− p) [1−B(1− exp(it))]C

Parameters – A, B (p1, p2): Prob(success), C (n): Number of trials, p: Weight of component #1

Moments, etc.
Mean = (pA+ (1− p)B)C

Variance =
[
pA(1− A) + (1− p)

(
B (1−B) + pC (A−B)2

)]
C
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Notes

1. Binary mixtures may require hundreds of datapoints for adequate optimization and, even
then, often have unusually wide confidence intervals, especially for parameter p.

2. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite
of two populations having parameters and weights as described above.
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Geometric(A)&Geometric(B) y = 0, 1, 2, . . . , 0 ≤ p ≤ 1
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1− (1− A)y+1
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[
1− (1−B)y+1

]
CF =

pA

1− (1− A) exp(it)
+

(1− p)B
1− (1−B) exp(it)

Parameters – A, B (p1, p2): Prob(success), p: Weight of component #1

Moments, etc.
Mean =

p

A
+

1− p
B
− 1

Variance =
A2(1−B) + (A− 2)(A−B)pB − (A−B)2 p2

A2B2
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Notes

1. Binary mixtures may require hundreds of datapoints for adequate optimization and, even
then, often have unusually wide confidence intervals, especially for parameter p.

2. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite
of two populations having parameters and weights as described above.
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InflatedBinomial(A,B,C) y,C = 0, 1, 2, . . . ,B > 0, 0 ≤ p ≤ 1
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)
Ay(1− A)B−y + 1− p, y = C

CDF =


p

(
B

y

)
(B − y)Beta(1− A;B − y, y + 1), y < C

p

(
B

y

)
(B − y)Beta(1− A;B − y, y + 1) + 1− p, y ≥ C

CF = p [1 + A(exp(it)− 1)]B + (1− p) exp(iCt)

Parameters – A: Prob(success), B: Number of trials, C: Inflated y, p: Weight of non-inflated
component

Moments, etc.
Mean = pAB + (1− p)C

Variance = p
[
AB(1− 2C(1− p)) + A2B (B (1− p)− 1) + C2 (1− p)

]
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Notes

1. Binary mixtures may require hundreds of datapoints for adequate optimization and, even
then, often have unusually wide confidence intervals, especially for parameter p.

2. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite
of two populations having parameters and weights as described above.
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InflatedPoisson(A,B) y,B = 0, 1, 2, . . . , A > 0, 0 ≤ p ≤ 1
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, y < B

p
Γ(1 + byc, A)

Γ(1 + byc)
) + 1− p, y ≥ B

CF = p exp [A (exp(it)− 1)] + (1− p) exp(iBt)

Parameters – A (λ): Poisson expectation, B: Inflated y, p: Weight of non-inflated component

Moments, etc.
Mean = pA+ (1− p)B

Variance = p
[
A+ (1− p)(A−B)2

]
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Notes

1. Binary mixtures may require hundreds of datapoints for adequate optimization and, even
then, often have unusually wide confidence intervals, especially for parameter p.

2. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite
of two populations having parameters and weights as described above.
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NegBinomial(A,C)&NegBinomial(B,C) 0 < y = C,C + 1, . . . , 0 < A,B < 1, 0 ≤ p ≤ 1
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CDF = p
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)
2F1(1, y + 1; y − C + 2; 1− A)AC(1− A)y−C+1

]
+ (1− p)

[
1−

(
y

C − 1

)
2F1(1, y + 1; y − C + 2; 1−B)BC(1−B)y−C+1

]
CF = exp(iCt)

[
pAC (1 + (A− 1) exp(it))−C + (1− p)BC (1 + (B − 1) exp(it))−C

]
Parameters – A, B: Prob(success), C: a constant, target number of successes, p: Weight of
component #1

Moments, etc.

Mean =
pC

A
+

(1− p)C
B

Variance =
C

A2B2

[
pB2(1 + C(1− p))− pAB(B + 2C(1− p))− A2(1− p)(B − pC − 1)

]
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Notes

1. Binary mixtures may require hundreds of datapoints for adequate optimization and, even
then, often have unusually wide confidence intervals, especially for parameter p.

2. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite
of two populations having parameters and weights as described above.
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Poisson(A)&Poisson(B) y = 0, 1, 2, . . . , 0 ≤ p ≤ 1
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CDF = p exp [A (exp(it)− 1)] + (1− p) exp [B (exp(it)− 1)]

CF = p exp [A (exp(it)− 1)] + (1− p) exp [B (exp(it)− 1)]

Parameters – A, B (λ1, λ2): Expectation, p: Weight of component #1

Moments, etc.
Mean = pA+ (1− p)B

Variance = p (A−B)(1 + A−B) +B − p2(A−B)2
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Notes

1. Binary mixtures may require hundreds of datapoints for adequate optimization and, even
then, often have unusually wide confidence intervals, especially for parameter p.

2. Warning! Mixtures usually have several local optima.

Aliases and Special Cases

Characterizations

1. The usual interpretation of a binary mixture is that it represents an undifferentiated composite
of two populations having parameters and weights as described above.
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