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For deeds do die, however nobly done,
And thoughts of men do as themselves decay,
But wise words taught in numbers for to run,
Recorded by the Muses, live for ay.

E. Spenser, 1591

When you can measure what you are speaking about, and express it in numbers, you know
something about it; but when you cannot measure it, when you cannot express it in
numbers, your knowledge is of a meager and unsatisfactory kind: it may be the beginning
of knowledge, but you have scarcely, in your thoughts, advanced to the stage of science.

Lord Kelvin, 1891



Contents

Preface vii

I Data 1

1 “. . . something about it” 2
1.1 A Precious Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 An Imperfect World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Data Summaries: Statistics and Graphs 12
2.1 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Data vs. Information 22
3.1 An Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Another Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Separating Information from Error . . . . . . . . . . . . . . . . . . . . . 25

II Modeling 26

4 Models in the Real World 27
4.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Stochastic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Deterministic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Optimizing the Model 43
5.1 Stochastic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Deterministic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 How Good is the Model? 49
6.1 Stochastic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Deterministic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

i



6.3 Is One Model Better Than Another? . . . . . . . . . . . . . . . . . . . . 53

7 How Precise are the Model Parameters? 54
7.1 Bootstrap Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8 Summary 56

III Regress+ User Guide 57

9 Overview 58
9.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

10 Input 60
10.1 Input Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.2 Stochastic Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
10.3 Deterministic Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

11 Setup 63
11.1 Stochastic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
11.2 Deterministic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
11.3 User Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

12 Output and Menus 71
12.1 Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
12.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
12.3 Output Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
12.4 Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

13 What Could Possibly Go Wrong? 80
13.1 Failure to Converge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
13.2 Convergence to an Incorrect Solution . . . . . . . . . . . . . . . . . . . . 80
13.3 Poor-quality Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
13.4 Systematic Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
13.5 Overparametriztion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
13.6 Wishful Thinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A Deterministic Models 83



B Technical Details 84
B.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
B.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
B.3 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

C Illustration of Weierstrass Theorem 87



List of Figures

1.1 Mural Quadrant of Tycho Brahe (1598) . . . . . . . . . . . . . . . . . . 8
1.2 CERN ATLAS Detector . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 ATLAS Detector Magnets . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Frequency Histogram for MLB Batting-average Maxima . . . . . . . . . 16
2.2 Another Frequency Histogram . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Carbon-14 Decay Intervals (Frequency) . . . . . . . . . . . . . . . . . . 18
2.4 Carbon-14 Decay Intervals (Probability) . . . . . . . . . . . . . . . . . . 19
2.5 Carbon-14 Decay Intervals (PDF) . . . . . . . . . . . . . . . . . . . . . 20
2.6 Daytime vs. Day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Ab initio Results for H+
2 (10 replicates) . . . . . . . . . . . . . . . . . . . 23

4.1 Carbon-14 Decay Intervals (Big Sample) . . . . . . . . . . . . . . . . . . 30
4.2 Exponential Model with Five λ Values . . . . . . . . . . . . . . . . . . . 32
4.3 Exponential Model with λ = Empirical Mean . . . . . . . . . . . . . . . 33
4.4 Exponential CDF with λ = Empirical Mean . . . . . . . . . . . . . . . . 35
4.5 Carbon-14 Decays in One Minute . . . . . . . . . . . . . . . . . . . . . 36
4.6 Decay Counts Modeled as Poisson(13.61), Binwidth = 1 . . . . . . . . . 37
4.7 Decay Counts Modeled as Poisson(13.61), Binwidth = 3 . . . . . . . . . 38
4.8 Standard Normal (Gaussian) Distribution . . . . . . . . . . . . . . . . . 39
4.9 Synthetic Normal(0, 1) Data, (N = 1,000) . . . . . . . . . . . . . . . . . 39
4.10 A Binary Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.11 Sine-wave Model for Daytime Data . . . . . . . . . . . . . . . . . . . . 41
4.12 H+

2 Data and Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 Hale-Bopp Model (unweighted) . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Hale-Bopp Model (weighted) . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1 CDF Plot for Salaries Data and Model . . . . . . . . . . . . . . . . . . . 50
6.2 Salaries: Probability Plot for Mixture Model . . . . . . . . . . . . . . . . 51
6.3 Salaries: Probability Plot for Gaussian Model (Unacceptable) . . . . . . . 52

11.1 Initial Setup Dialog for BattingAvg Example . . . . . . . . . . . . . . . 64
11.2 Setup Dialog with Gumbel Model . . . . . . . . . . . . . . . . . . . . . 64

iv



11.3 Sample Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
11.4 Parameter Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
11.5 Initial Setup Dialog for H+

2 Example . . . . . . . . . . . . . . . . . . . . 68
11.6 Constraint Dialog with New Values . . . . . . . . . . . . . . . . . . . . . 69
11.7 Initial User Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

12.1 Batting Average: Display Dialog for Gumbel Model . . . . . . . . . . . . 72
12.2 Default Graph Dialog for Continuous Stochastic Models . . . . . . . . . 73
12.3 Batting Average: Gumbel CDF . . . . . . . . . . . . . . . . . . . . . . . 74
12.4 Batting Average: Gumbel Probability Plot . . . . . . . . . . . . . . . . . 74
12.5 Default Graph Dialog for Weighted Hale-Bopp Exponential Model . . . . 75
12.6 Hale-Bopp Model wiith Logarithmic Y-axis . . . . . . . . . . . . . . . . 76
12.7 Sample Default Report for BattingAvg.pred.in . . . . . . . . . . . . . . . 77
12.8 SaveAs. . . Dialog for Regress+ Graphs . . . . . . . . . . . . . . . . . . . 78

C.1 One Example of the Weierstrass Theorem . . . . . . . . . . . . . . . . . 88



List of Tables

1.1 Carbon-14 Decay Intervals (s) in 1 g of Natural Carbon . . . . . . . . . . 3
1.2 Carbon-14 Decays in 1 min . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 U.S. MLB Batting-average Maxima (1876–2012) . . . . . . . . . . . . . 4
1.4 Daytime (min) in Boston, MA . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Measured Values of the Electronic Charge . . . . . . . . . . . . . . . . . 9

3.1 Distance Between Two Random Points in Unit Circle (experimental) . . . 24

5.1 ML Parameters for Daytime Model . . . . . . . . . . . . . . . . . . . . . 45
5.2 Rate of Production of CN in Comet Hale-Bopp . . . . . . . . . . . . . . 46
5.3 ML Parameters for Hale-Bopp Regressions . . . . . . . . . . . . . . . . 48

7.1 ML Parameters for Salaries Data and Model . . . . . . . . . . . . . . . . 55
7.2 Salaries: 95% Confidence Limits for ML Parameters . . . . . . . . . . . 55

11.1 User-model Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . 70

12.1 Goodness-of-fit Percentiles . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.1 Built-in Deterministic Models . . . . . . . . . . . . . . . . . . . . . . . 83

vi



Preface

The original motivation for creating the Regress+ modeling package was my personal
need for the capabilities that it provides. In particular, I required an application that would
handle equations and probability distributions equally well, with reliable estimates for
goodness-of-fit and confidence intervals. Moreover, I wanted one that was user-friendly.
For a Mac user/developer, that was de rigueur. It also seemed probable that such a package
might gain a broader audience. Since its initial publication in 1998, Regress+ has been
downloaded more than 53,000 times (to date) by researchers, students, professors, . . . in
167 countries so the hypothesis appears valid.

The purpose of this book is to say something about data analysis in general and to
provide a User Guide for Regress+ 2.8. Data analysis includes much that is a obscure
to most practitioners, few of whom are certified professionals in the discipline. I include
myself in the majority; I am a scientist, not a statistician or mathematician—a fact that
will likely be apparent in the pages to follow. In this book, I have tried to explain various
things in the manner in which I wish someone had explained them to me.

The book is divided into the three parts implied by its title. Part I discusses data per se
and Part II discusses mathematical modeling in general. The latter was written for a broad
audience so, while the examples utilize Regress+, the software is not otherwise mentioned.
Part III is the Regress+ User Guide. Here, you will find all necessary descriptions for input,
output, options, etc. required by the general user. In addition, some technical details are
provided in an appendix so that experts in the field may have the opportunity to assess
Regress+ methodology in the light of their own experience.

A related book, the Compendium of Common Probability Distributions is included as
well and also published separately. This is an encyclopedia with 59 entries, including all
of those built into Regress+.

Full Disclosure: Regress+ implements traditional, frequentist methodology. Experts
will know that the state of the art for data modeling is Bayesian inference which is very
different. If you desire an analysis less “quick-and-dirty” than that provided by Regress+,
check out its free, far more powerful, Bayesian sibling, MacMCMC, available here.

MICHAEL P. MCLAUGHLIN

MCLEAN, VA
MARCH, 2021

MPMCL ‘AT’ CAUSASCIENTIA.ORG

vii

http://www.causascientia.org/software/Regress_plus.html
http://www.causascientia.org/software/WorldRegress.html
http://www.causascientia.org/math_stat/Dists/Compendium.html
https://en.wikipedia.org/wiki/Bayesian_inference
https://www.causascientia.org/software/MacMCMC/MacMCMC.html
mailto:mpmcl@causascientia.org


Part I

Data



Chapter 1

“. . . something about it”

THE view, from what I could glimpse through several layers of thick plastic, was as
stark and monotonous as ever making me wonder why I habitually chose a window
seat. We were about halfway between Washington, D.C. and Dallas-Fort Worth,

flying at 40,000 feet, and all I could see were the mounded tops of clouds and the sky. Not
a bright blue sky worthy of this clear November morning but a sky of a more somber hue,
an indigo intimation of the blackness lying in wait far above us. It was bleak and freezing
out there. Rather boring as well, if you didn’t know better.

I knew better. At this altitude, where the troposphere thins out to become the strato-
sphere, free neutrons were whizzing about at some 2 km/s and smashing into everything
in sight—their sight, not mine. From their sub-nano perspective, it was far from boring.
Think Bob Dylan, Ballad of a Thin Man, “. . . something is happening here but you don’t
know what it is, do you, Mister Jones?” The atmosphere was thin and cold but something
was most definitely happening. Chemistry was happening.

You cannot go around hitting things at over 7,000 km/hr (4,300 mph) without serious
consequences. In this case, these neutrons are continually hitting nitrogen atoms in the air.
The consequence, albeit invisible to human eyes, is truly spectacular, nothing less than the
old alchemists’ dream of the transmutation of elements. It can be written as follows:

1
0n + 14

7N −→ 14
6C + 1

1H (1.1)

Granted, this is not exactly lead into gold but it is nitrogen into carbon which is just
as fundamental a change. The whole point about chemical elements is that they are, for
all practical purposes, immutable. It takes an extraordinary amount of energy to force one
to change into another. A collision at 2 km/s does, however, provide sufficient (kinetic)
energy for one nitrogen atom to change into one carbon atom. There is a proton left over
to balance things out.

As you can imagine, Equation (1.1) is not your typical chemical reaction but the prod-
uct, carbon-14, is genuine carbon and behaves as such. Chemistry is determined by the
number of protons in an atom, not the number of neutrons. Although carbon-14 has eight
neutrons in it instead of the usual six or seven, this does not affect how it reacts with other

2



CHAPTER 1. “. . . SOMETHING ABOUT IT” 3

atoms and molecules. Carbon-14 mixes thoroughly with the rest of the carbon on Earth and
does what carbon does all the time. For instance, it forms carbon dioxide which is taken
up by plants which are then eaten by animals, etc. With no effort at all, 14C gets spread
evenly throughout the biosphere along with the far more common 12C and 13C. Still, that
eighth neutron is, in some respects, one neutron too many and, as a result, carbon-14 is not
stable. It will slowly decay, all by itself, back into nitrogen-14.

14
6C −→ 14

7N + e− + ν̄e (1.2)

Moreover, it will do so even when it is part of a molecule, any molecule anywhere. If your
body has a mass of 80 kg (176 lbs), then it contains about 14 kg of carbon, an extremely
small fraction of which is carbon-14. Of course, atoms are also extremely small so your
body contains a huge number of 14C atoms in spite of their rarity. Adding everything up,
the reaction above, Eq. (1.2), is occurring inside of you more than 3,000 times per second.
On Earth, living organisms are all radioactive.

When an organism dies, the carbon-14 it contains continues to decay but is no longer
replenished by eating or respiring. This fact, as you probably know, is the physical basis
of the carbon dating technique. More noteworthy, for our purposes, is that this beta decay
is an example of a process that is inherently random. The time until a particular carbon-14
atom decays is completely unpredictable—in principle, not just because nobody is smart
enough to have figured it out. This decay is a consequence of the weak force and the laws
of Quantum Mechanics, which have been experimentally validated to a dozen decimal
places, require that no one will ever figure it out. In fact, for reasons that you can read
elsewhere, it is not even a meaningful question [3].

If you observe a gram of pure carbon freshly extracted from the environment and record
the time intervals between successive carbon-14 decays, you will get a dataset much like
that shown in Table 1.1. As described above, these numbers are random (unpredictable).

Table 1.1: Carbon-14 Decay Intervals (s) in 1 g of Natural Carbon

3.1 14.9 1.2 1.6 0.9 3.7 7.4 3.5 2.9 8.0
1.0 5.2 1.2 7.8 6.7 0.8 13.5 1.1 1.5 6.7
0.8 1.1 1.9 3.1 7.5 7.1 9.4 2.6 0.8 2.7
2.0 8.3 7.9 16.0 0.5 1.8 3.3 2.4 1.0 0.8
0.1 6.3 8.8 1.9 4.3 0.6 0.2 4.2 18.4 10.3

These observations are also independent. In non-mathematical language, this says that
they do not have any influence on each other. Note that independence is distinct from
randomness; one does not imply the other.

Yet another property of the observations (measurements) in Table 1.1 is that they are
continuous meaning that there is no limit as to how close they can be to each other. A
continuous value can be any real number. In contrast, discrete measurements are usually
integers, most often starting at zero. A discrete dataset can be obtained by repeating the

http://en.wikipedia.org/wiki/Radiocarbon_dating
http://en.wikipedia.org/wiki/Weak_interaction
http://en.wikipedia.org/wiki/Quantum_mechanics
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experiment above but, this time, just counting how many carbon-14 atoms in the sample
decay during a fixed period. If you do this with 1-minute periods for 2 hours, you will get
something like the results shown in Table 1.2. Once again, these observations are random
and independent.

Table 1.2: Carbon-14 Decays in 1 min

18 9 21 15 17 11 9 10 11 15 16 16 9 16 14
21 9 14 19 12 8 26 14 10 15 11 14 17 10 10
18 22 12 16 10 7 23 11 16 15 12 19 14 10 14
20 12 10 9 13 13 12 9 9 18 14 13 13 13 15
12 15 13 14 18 11 13 8 20 17 11 16 12 16 6
16 15 10 15 9 17 9 12 14 14 8 13 14 12 13
12 17 15 11 17 15 7 20 13 13 11 8 13 8 17
15 10 13 13 20 17 12 11 22 14 17 14 17 8 11

Sometimes data do not fall neatly into continuous/discrete categories because the ob-
servations, although discrete, are so close together that, for all practical purposes, they can
be treated as though they were continuous. The data in Table 1.3 illustrate this quite well.
These data list the seasonal maximum batting averages for U.S. Major League Baseball
over more than a century. The averages are actually discrete fractions but can be very close
in value since a batter can get hundreds of at-bats during a season.

Table 1.3: U.S. MLB Batting-average Maxima (1876–2012)

Season Maximum × 1000
429 387 358 357

360 399 368 374 354 371 388 372 344 373
336 340 335 380 440 405 410 424 385 410

1900 381 426 378 344 376 308 358 350 324 377
384 420 409 390 368 369 386 383 382 384
407 394 420 403 378 393 378 398 379 369
381 390 367 356 363 349 388 371 349 381
352 406 356 328 327 309 353 343 369 343

1950 354 344 327 337 341 340 353 388 328 353
320 361 326 321 323 321 316 326 301 332
329 337 318 350 364 359 333 388 333 333
390 336 332 361 343 368 357 363 366 339
329 341 343 363 359 356 358 347 339 357

2000 372 350 349 326 372 331 347 363 328 365
359 344 330
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The original data [2] were recorded as decimal fractions with four significant figures
in deference to their exactness as discrete values. Typically, batting averages are reported
to three significant figures as in this table, implying precision to one part in a thousand.1

However, since baseball players do not get 1,000 at-bats in one season, even this much
precision is a bit fictitious.

Table 1.3 illustrates one more feature common to datasets. The observations are coded
by multiplying each average by 1,000. Coding is (usually) a linear transformation2 that
simplifies data presentation by removing redundant digits. It can also improve an analysis
by focusing on the range exhibited by the data. In this case, that range is [325, 440],
spanning just 116. Consequently, any analysis that compares these batting averages to one
another cannot justifiably claim a precision any better than one part in 116. The results
would then be reported to two significant figures plus, by convention, one or two uncertain
digits with the uncertainty shown explicitly.

Random numbers, such as we see in these three tables, are often called random variates
since they are variables (not constant) and unpredictable. Generally, they are unpredictable
because we do not know how, or have enough information, to predict them. In rare cases,
they are intrinsically unpredictable regardless of how expert one might be.

Of course, making predictions is a primary purpose of data analysis. Therefore, it is
fortunate that random (stochastic) data are the exception not the rule. In the majority of
datasets, there is a (possibly causal) relationship between two (or more) variables such that
one seems to be determined by the other(s). Such relationships are said to be deterministic.
An example is provided by the time series shown in Table 1.4.

Table 1.4 records the duration between sunrise and sunset3 in Boston, MA, USA over
three years starting on 1 January 1995. The datapoints correspond to the first day of
each month plus the minimum and maximum in each year. It is apparent that, for a fixed
location, daytime is not at all random. It varies regularly and periodically so that a given
day of the year has roughly the same daytime every year. Likewise, the shortest and
longest times occur on or about the same date year after year. To a good approximation,
day number determines daytime.

Alternatively, one could say that daytime determined day number at least in a given
year. However, one variable is almost always considered to be determined by (dependent
on) the rest.4 This is the so-called dependent or response variable, in this case, daytime.
The others are independent variables, also termed covariates. This language arose be-
cause, in an experiment, one typically has good control over independent variables but no
control over the dependent variable. Measuring the latter is nearly always a goal of the
experiment.

When a relationship is causal, it is obvious which variable is dependent but a determin-
istic relationship does not necessarily imply cause-and-effect. It might indicate merely an

1that is, being able to distinguish 1,000 from 999 reliably
2adding a constant, multiplying by a constant or both
3rounded off to the nearest minute
4Apologies to the astrophysics community where this statement is less true.
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Table 1.4: Daytime (min) in Boston, MA

Date Day Daytime Date Day Daytime Date Day Daytime
1/1/95 1 545 1/1/96 366 544 1/1/97 732 545

32 595 397 595 763 597
60 669 426 671 791 671
91 758 457 760 822 760

121 839 487 840 852 839
152 901 518 902 883 902

21/6/95 172 915 21/6/96 538 915 21/6/97 903 915
182 912 548 912 913 912
213 867 579 865 944 865
244 784 610 782 975 783
274 700 640 698 1005 699
305 616 671 614 1036 615
335 555 701 554 1066 554

22/12/95 356 540 21/12/96 721 540 21/12/97 1086 540
1/1/98 1097 545

association between two or more variables. A classic example is the relationship between
the height and weight of adult humans. It is not really correct to say that height is the cause
of weight or vice versa. However, they certainly exhibit a strong association. When one is
small, the other tends to be small as well, and so on. Quite often, this means that both are
linked to one or more common (perhaps unknown) factors.

The foregoing datasets are not meant to comprise an exhaustive categorization of data
in general, merely a few examples to illustrate some of the possibilities. There are many
kinds of data but, in this text, we are going to focus on numerical, univariate data meaning
one variable in stochastic cases and just two variables in deterministic cases. This will
suffice to explain all of the fundamental ideas appropriate to an introductory discussion
and should provide a useful starting point for readers interested in pursuing this subject as
well as a basis for further study regarding multivariate data.

1.1 A Precious Resource
Back in 1989, John Allen Paulos garnered more than his 15 minutes of fame by lasting
almost five months on the New York Times Review of Books best-seller list for an en-
joyable little volume entitled Innumeracy [11]. Needless to say, he was writing about the
population at large, not himself. It is a sad fact that the proverbial “man on the street”
cannot do long division without a calculator and would not know a logarithm from a lol-
lipop. No surprise, then, that anything numerical leaves most people more than willing
to change the subject. This deficiency also helps explain why science, especially, is so



CHAPTER 1. “. . . SOMETHING ABOUT IT” 7

poorly understood and appreciated except when it is erroneously equated to technology or
medicine.

We are concerned here with data and most data are expressed in numbers since they
have an unlimited capacity for accuracy and precision. Lord Kelvin, justly renowned for
his work in thermodynamics, had it exactly right and his thoughts on the matter are most
apt. Knowledge may originate with casual observations but it does not mature until those
observations give way to accurate measurements which, as any experimentalist will attest,
require a great deal of talent and experience just to collect. Any nontrivial experiment or
data-collection effort is something that is difficult to do well and, usually, very expensive.
Consequently, good data are truly a precious resource and merit analysis of equal quality.

Obtaining good data requires considerable care when making and recording measure-
ments so as to maximize accuracy and precision while, at the same time, avoiding biases.
Some definitions are in order:

Accuracy
Closeness to the truth which, in turn, is defined by Nature.

Precision
Roughly speaking, the number of significant digits in the measured value indicating
how many of them are reliably repeatable in replicate experiments.

Bias
An offset from the truth, often fairly constant.

We shall have much more to say about these terms in due course but the intuitive descrip-
tions above will be enough for now. They are essentially correct.

The literature is replete with examples showing the extent to which scientists and others
will persevere in their quest for the best possible data. Even centuries ago, the need for
accuracy was well understood as the picture shown in Figure 1.1 makes clear. This is an
illustration [16] of the Great Mural Quadrant, an astronomical instrument built in Denmark
by Tycho Brahe in the late sixteenth century and used to determine the positions of stars
and planets. Brahe was nearly obsessed with a desire for accuracy and this quadrant was
his most ambitious undertaking in pursuit of that goal. It had a precision of six seconds
of arc when measuring declinations (elevations). This, plus a very good clock to measure
distance along the perpendicular dimension, as the Earth rotated, gave celestial positions
accurate to about one minute of arc which was world-class at the time.5

Celestial positions are important because they are the basis for making annual calen-
dars so getting them as accurate as possible is worth a lot of effort. The same can be said
of a large number of physical quantities. As technology improves, these quantities are
measured again and again with improving accuracy and precision. An example is shown
in Table 1.5. Here, in chronological order, are the best experimental values for the charge
on an electron, one of the most fundamental of physical constants. The precision of these

5The full moon is about 30 minutes of arc in diameter.

http://en.wikipedia.org/wiki/Tycho_Brahe
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Figure 1.1: Mural Quadrant of Tycho Brahe (1598)

values is indicated by one or two digits given in parentheses after the value. These par-
enthetical digits correspond to the estimated uncertainty in the rightmost digit(s) of the
reported measurement. We shall have a lot more to say about the quantitative meaning of
this uncertainty but, for now, what matters is that the precision in this table is obviously
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getting better. It is also true that accuracy is improving as well but there is no way to tell
that just by looking at the numbers.

Table 1.5: Measured Values of the Electronic Charge

Year Charge (C) ×1019 Ref.
1906 1.0 [14]
1913 1.592(3) [8]
1930 1.591(2) [9]
1941 1.6015(4) [5]
1960 1.60154(3) [15]
1975 1.6021892(46) [7]
1986 1.60217733(49) [10]
1998 1.602176462(63) [10]
2002 1.60217653(14) [10]
2006 1.602176487(40) [10]
2010 1.602176565(35) [10]
2014 1.6021766208(98) [10]
2018 1.602176634() a [10]

anow defined as exact

Figure 1.1 and Table 1.5 demonstrate that the need for the best possible data is a con-
tinuing concern. One reason for this is that the effects one is seeking by making measure-
ments are not necessarily large. If they were, then they would be easy to find but, once
you find the large effects, you must then focus on smaller and smaller effects. It might be
tempting to ignore small effects but, in science and other disciplines, small exceptions are
not always insignificant. Very often, the opposite is true.

The old saying that “It is the exception that proves the rule” is somewhat confusing to
modern listeners because the meaning of “prove” is not what it used to be. The English
verb “to prove” originally meant “to test” as in the term “proving ground” so what this old
proverb is really saying is that an exception tests whether a rule is valid or not. If you find
an exception, however small, it tells you that the rule is defective. If that rule is thought to
be a physical law, then an exception indicates that the law is not a law after all and that the
relevant theory is in need of adjustment. This is not something that can be ignored.

Just as Tycho Brahe went to great effort and expense to collect his data, contemporary
scientists must often do the same. Figure 1.2 is a computer-generated schematic showing
the ATLAS detector of the Large Hadron Collider (LHC). As you can appreciate, judging
by the four humans in the figure, this detector is an extremely large, complex and expensive
instrument. Figure 1.3 shows another, internal view during construction [1].

The ATLAS experiment is currently staffed by 2,900 physicists from dozens of coun-
tries, all working to test Nature at a smaller scale than ever before, all intently focused on

http://atlas.ch/
http://lhc.web.cern.ch/lhc/
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Figure 1.2: CERN ATLAS Detector

Figure 1.3: ATLAS Detector Magnets

very tiny things. To be successful in any endeavor of this magnitude, only the very best
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data will suffice. These data are the product of considerable effort and, thus, very precious.
The same is true of many such efforts, not only in science but in any analysis that is

genuinely important. If you really want to say something about it, then your data have to
be the very best.

1.2 An Imperfect World
When one looks at Table 1.5, the level of accuracy achievable with modern instrumentation
is bound to be very impressive. Nevertheless, even the best instrumentation and the best
experiments are not perfect. Hence, the data they output are likewise not perfect. There
will always be some uncertainty associated with them.

Understanding and quantifying uncertainty, then handling it properly, is the underlying
theme of this text.



Chapter 2

Data Summaries: Statistics and Graphs

FINAL approach for the first of two flights. I am halfway there. Our runway is dead
ahead and it is time to put away all personal belongings and fasten seat belts. The
runway is about 150 feet wide and, as we left Washington, D.C., it was so far away

that it subtended only ten seconds of arc somewhere over the horizon. Nevertheless, we
found it. How we found it, how any large aircraft knows its location, is quite a tale.

At the hub of an aviation navigation system is a device known as a ring laser gyro, an
expensive analogue of the toy gyroscope that you might have received as a present once
upon a time. This toy works by pulling on a string wound around a heavy wheel forcing
the wheel to rotate rapidly. The Law of Conservation of Angular Momentum then keeps
the gyroscope at a constant position1 until it starts to slow down. A ring laser gyro does
something similar but without wheels. Instead, it sends two beams of laser light around a
closed loop in opposite directions. When the light comes back together again, it generates
an interference pattern. Einstein’s Theory of Relativity guarantees that this interference
pattern creates its own, self-calibrating inertial frame of reference. In other words, it is
immune to acceleration. Consequently, it can act as a fixed, zero baseline against which
accelerations can be accurately measured. If you were paying attention in calculus class,
then you can integrate these accelerations to get a sequence of velocities then integrate
these velocities to determine your current 3-D position.

However, this is a long and difficult mathematical process. If a pilot had to go through
all of these computations explicitly, the airplane would run out of fuel and crash. There are
times when the full analytical procedure must be set aside in favor of a quick, convenient
summary. It is the latter that a pilot sees in the cockpit.

The same is true in data analysis. There are no real shortcuts for the analyst but, when
reporting to a broader audience, analytical results must be summarized in a way that is
easy to understand. Even the analysis itself can benefit by considering various summaries
of the data. Summaries may be quantitative (statistics) or pictorial (graphs). Both can be
used to describe stochastic data as well as deterministic data.

1unless it is tilted from vertical in which case it remains at a constant angle while it precesses around
the vertical axis

12

http://en.wikipedia.org/wiki/Ring_laser_gyroscope
http://en.wikipedia.org/wiki/Angular_momentum
http://en.wikipedia.org/wiki/Theory_of_relativity
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2.1 Statistics
A statistic is a number2 that can be computed from the data alone using a formula that
contains no parameters—unspecified quantities in the model, adjusted somehow to suit the
analysis. Every statistic is designed to quantify some aspect of the data giving a perspective
with a clear, physical interpretation. Thus, a judicious collection of statistics will provide
a short, facile description of the entire dataset.

The literature contains a huge number of statistics of various kinds. Some of these are
highly specialized and were proposed for use in very narrow circumstances. Others are
extremely common not only because they are easy to understand but also because they
arise naturally out of the mathematics of analysis theory and are especially robust and
trustworthy. We shall see examples of both kinds.

In this section, we discuss statistics that quantify the overall extent of a dataset, that is,
how some specific data compare to numbers in general. This means examining a given set
of numbers apart from any relationships they might have to other numbers. Therefore, we
shall introduce statistics as they might apply to random variates.

Moments
The term moment is borrowed from the domain of physics, specifically mechanics. There,
it refers to the tendency of a force to rotate an object. Numerically, it is equal to the product
of the size of the force times the distance between the point where the force is applied and
a fulcrum about which rotation might be possible.

In statistics, there is the corresponding notion of a raw moment. Here, the “fulcrum”
is zero (the origin) and the “force” comes from the numbers in the dataset. There are
an infinite number of raw moments but only the first four {m1,m2,m3,m4} are of any
interest. The kth moment is defined in Equation (2.1) where N is the number of points, yi.

mk =
1

N

N∑
i=1

yki (2.1)

The first raw moment, m1, is just the (arithmetic) mean of the data. For reasons that
will become clear later, the mean is also called the expectation, the “expected” value of
y, a random variate. In general, the expectation (average) of yk is equal to the kth raw
moment of y.

For moments higher than the first, it is customary to shift the origin to the mean and
consider moments about the mean instead of about zero. These central moments, Mk, are
defined in Equation (2.2) where the overbar denotes an expectation.

Mk =
1

N

N∑
i=1

(yi − ȳ)k (2.2)

2occasionally, a vector or matrix
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Here, the “fulcrum” is the mean of the data instead of zero so the datapoints are being
compared to the mean not to zero. With a little algebra, the second moment about the
mean, known as the variance, can also be written in terms of the raw moments as shown
in Equation (2.3).

M2 = m2 −m2
1 = y2 − ȳ2 (2.3)

In other words, the variance is equal to “the average of the squares minus the square of the
average”.

Mean and variance are, by far, the most common statistics used to summarize a dataset.
The mean describes, in its own way, the location of the data on the real axis. Were it
unknown or undetermined, it would be thought of as a “location” parameter. The variance
describes the “spread” of the data about the mean. This can be seen immediately by
looking at two datasets, d1 and d2, with the same mean but different variances:

d1 = {1, 2, 3, 4, 5, 6, 7, 8, 9}
d2 = {4, 5, 6}

Both datasets have mean = 5 but Var(d1) = 20/3 and Var(d2) = 2/3. As measured by
the variance statistic, the spread of d1 about its mean is ten times greater than that of d2.
Variance denotes scale (size), not location. When unknown or undetermined, it is therefore
a scale parameter. The square-root of the variance is called the standard deviation.

In a similar fashion, M3 describes the skewness or lopsidedness of a dataset about its
mean andM4 describes the kurtosis or “pointiness” of the data. These two statistics (shape
parameters) will make more sense after we look at some Graphs in the following section.

Altogether, these four central moments provide a rough summary of a dataset.

Quartiles
Another group of statistics, based on rank order, becomes available once the data, yi, are
sorted from low to high. Rank statistics do not use the values of the datapoints directly.
All that matters are the rankings. To illustrate, we shall use the data in Table 1.3 (N = 137).

One set of rank statistics are the quartiles. Given the sorted data, the first quartile is
the value that is 1/4 of the way from the beginning of the sorted list. The second and third
quartiles are 1/2 and 3/4 of the way along.3

The second quartile is also called the median and is sometimes used as an alternative
to the mean although they are not equivalent. For instance, if the highest batting average in
Table 1.3 were 900 instead of 440, the mean would increase substantially but the median
would not change at all. Likewise, the difference between the first and third quartiles,
called the interquartile range, is often used as an alternative to the variance in order to
describe the spread of the data.

Dividing the sorted data into four parts is traditional but other divisions are possible.
With 10 divisions, one would have deciles and with 100 divisions we get the special case
of percentiles. In general, such divisions are known as quantiles.

3If the quartile position falls in between two values, then you split the difference.
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Mode
The mode is meant to be the value in the dataset that occurs most often. Of course, with
continuous data, it is likely that no value occurs more than once. Nevertheless, values tend
to clump together more often than not and the “peak” of the highest clump then becomes
the mode.4 This will become clearer in the following section.

2.2 Graphs
The preceding section, defining various statistics, contains approximately a thousand words
and it is said that one picture is worth a thousand words. Unfortunately, this old proverb
does not tell you how to draw that picture.

We begin with the realization that even the simplest picture is two-dimensional. If we
take a dataset, such as that in Table 1.3, we have only a set of numbers all of which, in this
case, fall on the real number line. In fact, were they not coded, they would all fall between
zero and one by definition. We could draw a short line, label the left end 0 and the right
end 1, then put a dot on it, at the appropriate location, for each batting average but the
result would be one-dimensional—a messy line—which is not very informative. We need
to utilize a second dimension.

This is accomplished by making a graph which contains the line described in the last
paragraph (the abscissa) which is drawn horizontally plus another, perpendicular line (the
ordinate). These two lines are joined together at their respective origins to produce the
familiar Cartesian axes, so named in honor of René Descartes. The abscissa supplies
locations for our data but what does the ordinate supply? There are several choices, each
giving a different kind of graph. The different graphs describe different aspects of the data.

Graphing Random Variates
When the data are random variates, the simplest kind of graph is a histogram. To create
a histogram, the data must be either discrete or binned into discrete categories.5 To keep
the math simple, bins should be of equal width. For this batting-average dataset, we shall
define six bins with binwidth = 25 and the following seven bin boundaries:

boundaries = {300, 325, 350, 375, 400, 425, 450}

There must be enough bins to contain all of the data. In this example, the data do not go
as low as 300 or as high as 450 but that does not matter.

4Some authors consider the peak of any clump to be a mode while others define only the tallest peak as
the mode.

5Even discrete data may be further binned.

http://en.wikipedia.org/wiki/Ren\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {e\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \endgroup \relax \let \ignorespaces \relax \accent 19 e\egroup \spacefactor \accent@spacefactor _Descartes
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The next step is to “fill” the bins with the data, putting each datapoint into its correct
bin,6 after which each bin will contain zero or more datapoints.7 The number of datapoints
in a bin is called the bin frequency. At last, we have something to put on that second axis—
frequency. Doing so produces one type of histogram, a frequency histogram. With this
dataset, we get the histogram shown in Figure 2.1.
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Figure 2.1: Frequency Histogram for MLB Batting-average Maxima

Figure 2.1 and Table 1.3 present the same data in two different ways. The table gives
actual values while the figure shows a picture derived from those values. One cannot do
much analysis given only a picture but, as a summary, it can provide useful information.
For instance, Figure 2.1 shows the location and spread of the data as well as some sense
of relative frequency. Batting-average maxima in the range [350, 375) are most common;
this is the tallest bin, roughly the mode. However, maxima of 425 or more are uncommon.

What is not clear from Figure 2.1 is that it is somewhat arbitrary. We defined six bins
but we could have defined more or fewer. In fact, we could have put all of the data into
one bin or, at the other extreme, created 140 bins, one for each value in the observed range
(301–440). Both of these choices produce valid but useless graphs.

There is no universally accepted rule-of-thumb for selecting the number of bins in a
histogram. One simple approach is to pick a binwidth near the square-root of the number

6By convention, the left bin boundary is inside the bin but the right boundary is in the next bin (if the
latter exists). Symbolically, our first bin in this example is [300, 325) and the last is [425, 450).

7Empty bins are sometimes unavoidable, especially if an empty bin is between other bins.



CHAPTER 2. DATA SUMMARIES: STATISTICS AND GRAPHS 17

of datapoints, together with some appropriate minimum and maximum for the number
of bins. This strategy tends to split the precision of the graph evenly between the two
axes. Here, we have N = 137 so a binwidth of 12 should be reasonable but that would
give unaesthetic bin boundaries. A compromise would be to set binwidth = 10, giving
Figure 2.2 (legend added).
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Figure 2.2: Another Frequency Histogram

Notice that Figure 2.2 has a very different shape from that of Figure 2.1. The latter
is fairly smooth but the figure above is “bumpy”. It is generally true that the shape of a
histogram is quite sensitive to the binwidth and bin boundaries so you should not read too
much into it. This sensitivity decreases as N becomes very large.

Probability
It is natural to wonder what the chances are for a future datapoint to fall into one of the
existing bins of a frequency histogram. Obviously, the answer depends upon which bin
you have in mind. Looking at Figure 2.2, one would expect that the chances are a lot better
for that datapoint to fall in bin [350, 360) than in bin [300, 310). This line of thought leads
eventually to the concept of probability.

Probability may be defined in more than one way but, consistent with the foregoing
discussion, we shall adopt the frequentist approach with which one imagines (rightly or
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wrongly) that somewhere “out there” is a parent population of potential experiments (or
measurements) with as yet unknown outcomes. These putative experiments might be real,
something that could actually be done, or simply thought experiments. The set of all
possible outcomes of these experiments contains a subset, perhaps empty, that corresponds
to some predefined event, E , which is of particular interest. The probability of E , in the
frequentist sense, is then defined as follows:

Prob(E ) =
# of outcomes corresponding to E

# of all possible outcomes
(2.4)

This definition is not mathematically rigorous and, strictly speaking, it is true only in the
limit as the denominator approaches infinity but it captures the essence of the concept.

Probability quantifies the chances of a hypothetical event. By convention, a probability
of zero means that the event is impossible while a probability of one means that it is certain.
Consequently, probability is a real number in the range [0, 1]. Moreover, the sum of the
probabilities for all possible outcomes must add up to one, often expressed as 100%.

To illustrate, consider the data from Table 1.1. From this dataset, we can construct the
frequency histogram shown in Figure 2.3. Half of the data fall in the first bin. Therefore,
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Figure 2.3: Carbon-14 Decay Intervals (Frequency)

using the definition above, we could say (predict) that, based on this single sample, the
probability that a similar decay interval would be less than three seconds = 1/2. We could
go on to make analogous predictions for the remaining bins.
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Obviously, such predictions (probabilities) are only approximate. After all, if we wait
long enough, we are virtually certain to get a decay interval greater than 21 s but there is
no such bin on our graph because we did not observe such an interval (yet). Nevertheless,
we could compute an approximate probability for each bin and construct a histogram with
probability on the ordinate instead of frequency. This graph is shown in Figure 2.4. You
can check for yourself that the bin probabilities in this graph add up to one so, in this
figure, we are denying the possibility of larger decay intervals. On the other hand, a decay
interval less than zero really is impossible so that part of Figure 2.4 is correct.
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Figure 2.4: Carbon-14 Decay Intervals (Probability)

In this figure, probability is given by the height of each bin. Later, when we discuss
modeling, most of the math will involve continuous relationships and we shall discover
that it is much more convenient if probability were given as an area, not a height. If the
binwidth in Figure 2.4 were equal to one, then the height and the area of a bin would be the
same. Since the binwidth = 3, it is not. Therefore, we define one final type of histogram
in which the ordinate measures probability density, that is, probability per unit binwidth.

To get probability density, we define a probability density function (PDF) having units
equal to the reciprocal of the random variate.

PDF =
probability

binwidth
(2.5)

The PDF histogram is shown in Figure 2.5. It has a total area = 1 and is therefore said
to be normalized. It is more flexible than the histogram in Figure 2.4 because it can be used
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Figure 2.5: Carbon-14 Decay Intervals (PDF)

to compute the probability (= PDF × range) for any range(s) of the random variate. For
example, the probability, P, that a decay interval is in the range [5, 10] can be computed
by adding up the corresponding pieces (width = 1) of the histogram above:8

P =
10∑
k=5

PDF [k] · 1

= 1 · 1

3
· 8

50
+ 3 · 1

3
· 11

50
+ 2 · 1

3
· 2

50
= 0.30

(2.6)

Were the PDF a continuous function, this summation (a weighted average) would become
a definite integral (with width = dx). Either way, the PDF makes it easy to compare
theoretical predictions with observed data. As we shall see, it has many other uses as well.

Graphing Relationships
When the data are not random variates but value pairs describing a relationship, other kinds
of graphs are possible. These pairs are traditionally termed x (independent variable) and y
(dependent variable) and the relationship is characterized by saying that y is a function of

8Here, we have at most two significant figures.
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x. That is, the value of x somehow determines the value of y. Symbolically, we write this
as follows:

y = f(x) (2.7)

Here, f(·) denotes some deterministic but unspecified relationship between x and y.
Functional relationships can be plotted in several different ways depending upon the

coordinates used to label the axes. Most familiar are Cartesian coordinates, x, y, . . .. For
instance, the data in Table 1.4 may be plotted as follows:
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Figure 2.6: Daytime vs. Day

In this plot, the axes have been scaled to fit the data. For other purposes, different
scales might be more appropriate, e.g., when comparing this dataset to another.

Whatever kind of graph is drawn to visualize a dataset, its primary purpose is to exhibit
a comparison between the data and some explanation of why the data look the way they
do—and there are lots of possible reasons for that.



Chapter 3

Data vs. Information

FINAL approach once again and the end of a long day of traveling. My destination,
Colorado Springs, clearly visible roughly a thousand feet below, appeared a bit dry
and hot to anyone accustomed to life near an ocean. The city was small and spread

out to the East, of necessity since the West was cut off by Cheyenne Mountain which
looked to me rather tall and equally parched.

This mountain is well known as the location of several facilities constructed during
the Cold War for national defense. However, its most interesting feature, from my point
of view, were the many antennas sprouting up from its top. Looking over at all of these
sensors, with all their different shapes and sizes, I couldn’t help but see them as a concrete
metaphor for the fundamental difference between data and information. In colloquial En-
glish, these two terms are often considered equivalent. However, when one attempts any
serious data analysis, the difference becomes very obvious very quickly.

Any student in a high school physics lab trying to predict the final temperature for
a mixture of hot and cold water knows only too well that what you observe and what
Nature says you should observe are almost never the same. The problem, of course, is that
empirical measurements contain error, sometimes quite a lot of error. Consequently,

Data = Information + Error
Alas, in real life, there is no “back of the book” to look up the correct answer. All you

have is your own experience and expertise and, sometimes, a little software assistance.

3.1 An Experiment
Take two protons and one electron and bring them together in a space small enough so
that each can tell that the other particles are present. The protons will repel each other
since their electric charges have the same sign. Each of the protons will be attracted to the
electron, and vice versa, since “opposites attract”. Question: Will the combination of all
three stay together or just wander off? In other words, do they form a stable molecule?

22

http://en.wikipedia.org/wiki/Cheyenne_Mountain_nuclear_bunker
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This can be more than just a thought experiment. Schrödinger’s Equation describes
the basic laws of quantum mechanics for this system, H+

2 , at least to a non-relativistic
approximation which is quite accurate in this case. This equation is usually difficult to
solve but this particular example is relatively easy since it has so few elements. The whole
computation can be done ab initio (from first principles) using a sophisticated numerical
technique called Diffusion Monte Carlo (DMC). Here, the computation was carried out ten
times. The results are plotted in Figure 3.1.
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Figure 3.1: Ab initio Results for H+
2 (10 replicates)

This plot gives the total energy of the system, in electron volts, as a function of the
separation, in Ångstroms, between the two protons. It clearly shows that the energy goes
through a minimum at a little over 1 Å (= 10−10 m). When the protons get closer than
that, the energy rises sharply due to their mutual repulsion. As their separation gets larger
and larger, the energy levels off. At that point, the system is just a neutral hydrogen atom
plus a (distant) proton. Thus, the three particles will stay together. However, the energy
minimum is very shallow indicating that their tendency to stay together is not particularly
strong and so this “chemical bond” is easy to break.

What spoils this nice result is the fact that DMC is not exact. Each of these replicate
computations gave a slightly different energy for the same H–H distance.1 As noted on the
previous page, data = information + error and, here, we can actually see the error—but we
cannot measure it since we do not know the true answer.

1easy to see if you enlarge this document

https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
http://en.wikipedia.org/wiki/Diffusion_Monte_Carlo
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So we have a new problem—separating the information from the error. Only the former
will tell us what we want to know, namely, the behavior of H+

2 . In order to proceed,
we have to know either something about the information or something about the error.
Whatever this “something” is, we might be able to use it to effect some separation. It is
unlikely, however, that we will be 100-percent successful in any case and will end up with
a partial separation with information still contaminated with some error.

3.2 Another Experiment
It often happens that the data we collect are not the result of any sort of equation; they
might be random quantities such as those listed in Table 1.1. For instance, we might
ask, “What is the average distance between two points in a unit circle?” and then try to
determine the answer by selecting random pairs of points and measuring their separations.
The easiest way to do this is to select, repeatedly, two points in a 2 × 2 square and use
them only when both are inside the (inscribed) unit circle. A simple computer simulation
will suffice and Table 3.1 shows the results for one such experiment.

Table 3.1: Distance Between Two Random Points in Unit Circle (experimental)

Trials Result |Error|
10 0.8246413693 0.0807734180

100 0.9229038963 0.0174891089
1000 0.9025456727 0.0028691147
10000 0.9057814948 0.0003667074

100000 0.9053029327 0.0001118547
1000000 0.9052005706 0.0002142168

10000000 0.9052150149 0.0001997725
100000000 0.9054222979 0.0000075105
1000000000 0.9054073486 0.0000074387

The middle column in this table lists the average as the number of trials increases. It
is clearly converging. If we have done everything correctly, it is converging to the correct
answer. Fortunately, this answer can be computed exactly with a little calculus. The true
average separation is 128/(45 π) = 0.9054147873. . . , to ten decimal places. Thus, we can
also list the magnitude of the error (third column).

What this experiment shows is that i) even “random” measurements can contain error
but that ii) inherently random quantities still can be described with precision.
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3.3 Separating Information from Error
We shall see, in the next chapter, that information can often be separated from error when-
ever you have a good way to describe one or the other (or both).



Part II

Modeling



Chapter 4

Models in the Real World

THERE was a trick to it of course. I knew that there must be one and, sure enough,
there was. What you had to do, if you were right-handed, was to position the burette
so that the stopcock was pointing to the right. Then, you could wrap your left hand

around the bottom of the burette in order to manipulate the stopcock while swirling the
flask counterclockwise with your right hand. Near the endpoint, you could set the flask
down and use two hands to twist the stopcock very quickly so as to get half-drops.

I really needed those half-drops because I really needed the job. This was late June
between my Junior and Senior undergraduate years and I had found summer employment
working in a chemistry laboratory for the U.S. Fish and Wildlife Service. We tested fish
and sometimes water. I was lucky to get work at all that year and particularly fortunate to
find something that matched my college major. Getting paid for doing chemistry was the
best I could have hoped for and a far cry from my first summer job, at age eleven, picking
string beans on farms for three dollars a day.

The titration alluded to above was the final step in a day-long experiment to determine
the percentage of protein in a fish. It began by carefully weighing three small samples of
the fish. Our procedures were very rigorous, with protocols worthy of a forensic lab, so
we did everything in triplicate, at a minimum. Each sample was placed in a Kjeldahl flask
along with measured amounts of concentrated sulfuric acid, sodium sulfate and mercuric
oxide to act as a catalyst. This mixture was allowed to boil for about half an hour until
the entire solution turned crystal clear and colorless.1 After the solutions had cooled to
room temperature, excess sodium hydroxide was added to each flask which was quickly
stoppered with a tube running into an Erlenmeyer flask containing a known, excess amount
of dilute hydrochloric acid (HCl). The Kjeldahl contents were then boiled some more to
force all of the liberated ammonia gas into the HCl where it was neutralized.

Since the amount of HCl was in excess of the ammonia, there was some HCl left
over. The final step, back-titrating with standard sodium carbonate solution, was done
to quantify this excess and, by subtraction, determine the amount of HCl that it took to
neutralize all of the ammonia generated from the protein in a known quantity of fish.

1thanks to a boiling point > 400 C

27
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This last step was the really hard part. The protocol required completing all three
titrations before doing any computations which meant that you had no idea what sort of
answer to expect and, therefore, no bias when doing the next titration. If the three answers
did not match to several significant figures, then the day was wasted and you had to do it
all over again. As I said, I really needed those half-drops.

No doubt, even this brief synopsis of the experiment sounds a bit long-winded and so
it should. Molecules, even large protein molecules, are much too small to see and, when
human senses fail, we need something to take their place. In our Fisheries Laboratory, that
something was chemical theory. This theory enabled me to follow the chain of connections
linking a color indicating the endpoint of a titration all the way back to the percentage of
protein in a piece of fish. There are a great many links in this chain and none of them are
visible; they exist only in our imagination.

Most things in Nature lie far beyond the senses of human beings so, in order to examine
and/or test them, we need something that we can sense or at least manipulate. We need a
model.

4.1 Models
A model is a symbolic description of some real-world behavior that is observable, directly
or indirectly. The symbols used can be mathematical or just ordinary words of a spoken
language. In this document, we shall consider mathematical models—models expressed
in the language of mathematics and refer to them hereinafter simply as “models”.

There are several reasons why one might wish to devise a model:

• Describe the data mathematically (“Why are my numbers not all the same?”)
It is difficult to overstate the degree to which the language of mathematics enables
us to understand Nature. Here, we note two features of particular importance:

– Analytic form
The analytic form of a model (the formula) provides a huge amount of infor-
mation about the data. The fact that one model gives a good description and a
similar model does not is usually highly suggestive.

– Parameter values
The values of the model parameters are likewise informative. Quite often, these
parameters represent constants of Nature and many models are developed in
order to determine these constants and interpret them in the context of some
physical theory.

• Summarize the data
A model might be used solely as a simple formula for regenerating an observed
dataset. In this role, it could also be used for interpolation. Extrapolating a model to
an unobserved part of its domain, however, is very risky.
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• Minimize error
Once a model of some chosen form is optimized, meaning that it now contains
whatever parameters “best” reproduce empirical data, then the amount of variation
not “explained” by the model is minimized. This residual variation is typically some
combination of measurement error and modeling error. By minimizing it, one can
get a better idea of what errorless data might look like, i.e., the information.

• Quantify goodness-of-fit
The process of quantifying goodness-of-fit does two things. It tells us “how good”
the model is, that is, how well it can act as a substitute for observation. Also, it
allows us to compare two or more models to each other. It is important to know
when one model is good while another is of lower quality.

• Test an hypothesis
To the degree that a model is good, one may query the model instead of collecting
additional data. Therefore, an hypothesis may be tested using the model. This can
be especially important when there is no possibility of collecting additional data.2 A
good model will likely suggest further experiments as well.

• Perform “what-if” experiments
Occasionally, it is interesting to wonder what would happen if something contrary
to experience were actually true. This is one example of a “what-if” experiment. If
the desired experimental conditions cannot be met then, obviously, one cannot do
the experiment but one might be able to insert these conditions into a model. The
model output in such a case can sometimes be very illuminating.

Another purpose of a “what-if” experiment is to test our understanding of the situa-
tion (or phenomenon) by considering a scenario that is thought to have occurred in
the distant past and is no longer observable today.

• Predict future data or events
A common use of a model is to make a prediction of an unobserved quantity. This
might be an extrapolation such as predicting tomorrow’s weather or it could be just a
need to fill in some missing data (a process called imputation). Whatever the reason,
every model prediction will contain error since no model is perfect. Quantifying that
error is important but often difficult.

• Make inferences or decisions
Models are very often used to make inferences and decisions. In fact, almost any
time a decision is made as the result of examining some data, it is not made using
the raw data alone but in accordance with some model that was produced using that
data. The model is interpretable; the dataset is often just a collection of numbers.

2because 1) your money ran out, 2) you no longer have access to the equipment, 3) your test subjects all
died, etc.
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All of the reasons listed above for developing a model presuppose that, given a dataset,
it is possible to construct a model that describes it. There are a number of ways to do
this depending on the needs of the analysis. In particular, models for stochastic data are
developed and optimized using methods very different from those for deterministic data.
Therefore, we consider these two cases separately.

4.2 Stochastic Models
We shall start with an easy example, one with a lot of good data and reliable theory to
support it. The data in Table 1.1 were actually the first 50 datapoints from a larger sample
collected by recording 14C decays for about 12 hours. The histogram for this big sample
(N = 10,000) is shown in Figure 4.1. Our goal will be to develop a model for these data.
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Figure 4.1: Carbon-14 Decay Intervals (Big Sample)

Often, one does not know what analytic form is most appropriate for modeling some
data. In that case, one tries different forms based on past experience and/or the appearance
of a histogram. Here, the situation is just the opposite. Beta decays follow a general law of
Nature that is very well-known. There is no doubt at all about the formula describing decay
intervals. However, this formula contains a parameter which changes from one radioactive
isotope to another. Even knowing the analytic form, we must still determine the value of
this parameter.

Saying “determine the value” is overstating the situation. All we have is a single dataset
so the best we can do is to estimate this parameter. How well we can do this depends upon
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how much information we have in our dataset. We believe it to be a large sample but
whether it is large enough to develop a good model remains to be seen. At least, theory
tells us the correct model form.

But how can any theory tell us that? These 10,000 time intervals are random variates.
How can one say anything definitive about numbers which are supposed to be random? Is
that not an oxymoron?

Yes and no. If I told you the first 9,999 numbers and asked you to predict the last one
then you could not do that. The greatest expert in the world could not do that; the numbers
are truly random. However, we seek a model for 10,000 numbers, not for one number. We
want to model the sample as a whole so that we can make valid inferences about the decay
of 14C in general. That is usually the case when modeling random variates and it is not
only possible but sometimes easy to do. This is one of those times.

Analytic Form
Whenever one models random variates, one is seeking a formula for the PDF describing
the data. Here, Figure 4.1 depicts one representation of this PDF, a histogram. However,
this is only a crude approximation since the data are binned. The graph shows 30 bins so,
in each bin, there are an average of 10000/30 datapoints, all represented by the same PDF
value. Clearly, this is a very low-res picture. With continuous data, one should expect to
see a continuous PDF. The model required by theory is just such a continuous function.
This function models (describes) how the data are distributed along the abscissa—how
many near the origin, how many far away, etc. Consequently, this theoretical PDF is
termed a distribution. For our example, the analytic form of the PDF is given below (4.1).

x ∼ 1

λ
exp

(
−x
λ

)
(4.1)

where x is the decay interval (in seconds), λ is a parameter and ∼ is read “is distributed
as”. This particular model is called the exponential distribution.3

Here, the units of x are seconds. Since the argument of a transcendental function such
as the exponential function, exp(·), must be dimensionless, the units of λ must be seconds
as well. Hence, the overall units for this PDF are s−1. In general, the units for any PDF
are the reciprocal of the units of the variates it describes. This is a good rule to remember.
It provides a necessary4 check on the algebraic correctness of complicated PDFs.

Figure 4.2 shows the dataset histogram together with five different exponential models:
λ = {1, 2, 3, 4, 5} (from left to right, resp.).

Away from the mode, a model curve should pass through the center of the tops of each
histogram bin. Judging by this figure, the correct value of λ should lie somewhere between
4 (red curve) and 5 (green curve).

3single-parameter version
4but not sufficient

http://en.wikipedia.org/wiki/Continuous_function
http://en.wikipedia.org/wiki/Transcendental_function
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Figure 4.2: Exponential Model with Five λ Values

We might be able to estimate the value of λ if we knew what it represented. Model
parameters do not always have a simple interpretation but this one does. To understand
what λ represents, you have to understand a bit more about what a PDF represents.

One way to think about a continuous PDF is to imagine it to be a PDF histogram with
infinitesimally narrow binwidth, symbolized dx, describing a sample of infinite size. Then,
the height of the PDF curve for any x equals the probability density of x which, in turn, is
proportional (not equal) to the probability of x for that distribution. Note that probability
density can be greater than one, often much greater.5

If a PDF, f(x), is normalized as described in Chapter 2, then it can be used as a
weighting function for the purpose of computing a (continuously) weighted average. For
any arbitrary function of x, g(x), the expectation (mean) of g(x) would then be given by
the definite integral, over all x, shown in Equation (4.2).

g(x) =

∫
x

g(x) f(x) dx (4.2)

In (4.2), the product f(x) dx is the “probability” of x itself6 so the integrand is a
weighted probability of g(x), for any x, and the integral adds up an infinite number of
these probabilities. If g(x) = 1, then this sum equals the total area under the curve (= 1).

5but it cannot be less than zero
6technically, the probability that x is in the infinitesimal interval [x− dx, x+ dx]
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Were the PDF discrete, this definite integral would be replaced with a (possibly infinite)
summation. See Further Examples.

Now, suppose that g(x) = x. In that case, Equation (4.2) will tell us the mean
(weighted average) of x. Substituting our exponential model for f(x), we get

x̄ =

∫ ∞
0

x

λ
exp

(
−x
λ

)
dx = λ (4.3)

Thus, λ is the mean of x—a nice, easy interpretation! We can easily guess a good value
for λ because we have a sample of 10,000 variates which is enough to estimate any mean
with decent accuracy. The mean of our sample, to five significant figures, is 4.4929 s.
Substituting this value for λ, we get the model curve (blue) shown in Figure 4.3.
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Figure 4.3: Exponential Model with λ = Empirical Mean

This model does not describe our dataset perfectly but, then, we do not have a sample
of infinite size so there is bound to be some experimental error even with a valid model.
Still, the fit looks extremely good. We shall discuss how to quantify goodness-of-fit in
Chapter 6.

Playing with the PDF
We have not considered whether our model is optimal, the best it could possibly be; that
topic will be discussed in Chapter 5. However, it is clearly a very good model; Figure 4.3
shows that much for certain. Therefore, we may legitimately ask, “What might we do with
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this model? Can we extract other interesting things from it besides the mean? And what,
if anything, does all of this tell us about 14C beta decay?” It turns out that a really good
model can tell us quite a lot, indeed, most of what we might want to know.

We have just seen that, using the PDF, we can get the weighted average for any function
of the random variable. This is how we modeled the first moment—the mean. We can
model other moments in analogous fashion. To illustrate, we shall compute the variance
using our model then compare that answer to the empirical variance = 20.1357 s2.

The variance of x, Var (x), was defined in Equation (2.3):

Var (x) = m2 −m2
1 = x2 − x̄2

We already have the average of x (= λ); we now need the average of x2.

x2 =

∫ ∞
0

x2

λ
exp

(
−x
λ

)
dx = 2λ2 (4.4)

Substituting,
Var (x) = x2 − x̄2 = 2λ2 − λ2 = λ2 (4.5)

The modeled value of λ2 is 20.1862 s2. Comparing this to the observed variance, we
have a discrepancy of 0.0505, a relative error of 0.25 percent. This unusually good match
is the result of a good model and large sample size. As shown in Chapter 3, random errors
tend to cancel out more and more as the sample size increases.

Deriving moments from a PDF usually requires more mathematics than this. In a few
famous cases, the PDF is very easy to interpret and manipulate. Such PDFs are utilized in
many situations.7 One of the most famous PDFs, the normal (Gaussian) distribution, will
feature prominently in much of our modeling, especially with deterministic data.

A PDF can also tell us the value for the mode, assuming for now that there is only one.
The exponential distribution has its mode at zero but, in general, with continuous PDFs,
you find the mode by setting the derivative of the PDF to zero and solving for the root of
that equation. We shall demonstrate this later when we discuss the normal distribution.

Cumulative Distribution
The area under any portion of a PDF equals the probability that the variate will be found
in the corresponding range. If the PDF is continuous, then this area is found by integrating
the PDF over the range(s) of interest. For instance, in our present example, the probability,
P, that a 14C decay interval, x, will be observed in the range 5 ≤ x ≤ 10 seconds is
computed by integrating our PDF over that range.

P =

∫ 10

5

1

λ
exp

(
−x
λ

)
dx ;λ = 4.4929 s

= 0.2206

(4.6)

7even when they are not particularly good models!
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or about 22 percent. Check Figure 4.3. Does this answer look right? In the actual dataset,
there are 2,185 observations in this range (21.9 percent).8

If, instead, we integrate a PDF from its theoretical minimum, xmin, to some arbitrary
x ≥ xmin, we obtain the cumulative distribution function (CDF), sometimes called simply
the distribution. For any random variate, X, CDF(x) is the probability that X ≤ x. For the
exponential distribution,

CDF (x) =

∫ x

0

1

λ
exp

(
−x
λ

)
dx = 1− exp

(
−x
λ

)
(4.7)

For our model, the CDF is shown in Figure 4.4.9
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Figure 4.4: Exponential CDF with λ = Empirical Mean

Using Equation (4.7), CDF(10) = 0.8920 and CDF(5) = 0.6714, the difference of which
gives the answer shown in Equation (4.6).

Looking further, the maximum value in this dataset is 42.864 s. The probability that a
random decay interval is greater than this value = 1 − CDF (42.864) = 0.00007. Such a
region under the PDF is called an upper tail.10 The probability that a sample (N = 10,000)
would have such an extreme value as this = 1 − (1 − 0.00007)10000 = 0.503. Roughly,
a 50–50 chance, implying that we should not be surprised to see such a big value in such

8Compare this to the small-sample empirical value in Equation (2.6).
9Obviously, a CDF value cannot be greater than one or less than zero.

10and, of course, a tail on the left is called a lower tail
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a big sample. However, we would not expect to see such a big value in the small sample
shown in Table 1.1.

An unexpected extreme value, large or small, is called an outlier and suggests that
either the datapoint or the model might be invalid. However, identifying outliers reliably
is a difficult task.

Quantiles
As one example, it is very easy to show, from (4.7), that the median of an exponential
distribution is given by

Median = λ log(2) (4.8)

where log(·), here and elsewhere, denotes the natural logarithm.
In our model, the median is predicted to be 3.114 s. The observed median is 3.080 s.

Once again, this small relative error indicates that we have a good model.

Further Examples
We have described a model for the intervals between 14C decays but suppose, instead, that
our data were recorded differently. If, instead of decay intervals, suppose we had recorded
the number of decays in some fixed interval, e.g., one minute. Two hours’ worth of such
data would look something like this.
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Figure 4.5: Carbon-14 Decays in One Minute
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This dataset is discrete (integer values only). Therefore, it must be described by a
discrete PDF. It can be proven that, if interarrival times are exponential, then counts per
fixed intervals will be Poisson (4.9).

PoissonPDF =
1

x !
exp (−θ) θx (4.9)

where x is an integer ≥ 0 and θ is a parameter. Since raw moment m1 is now

∞∑
x=0

x

x!
exp (−θ) θx = θ (4.10)

we find that the parameter, θ, is once again the mean of this distribution. Also,

PoissonCDF =
Γ (bxc+ 1, θ)

Γ (bxc+ 1)
(4.11)

where Γ(·) is the (complete) Gamma function, Γ(·, ·) the incomplete Gamma function and
b·c the floor function.11, 12

Here is the Poisson model (blue), with empirical θ, superimposed on the data.
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Figure 4.6: Decay Counts Modeled as Poisson(13.61), Binwidth = 1

11The floor function is needed here because the Gamma functions take real arguments.
12For integer n, Γ(n+ 1) = n!

http://en.wikipedia.org/wiki/Gamma_function
http://en.wikipedia.org/wiki/Incomplete_gamma_function
http://en.wikipedia.org/wiki/Floor_and_ceiling_functions
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Here is the same result but with a different histogram. The moral of this comparison is
to be wary of using histograms to assess goodness-of-fit.
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Figure 4.7: Decay Counts Modeled as Poisson(13.61), Binwidth = 3

No description of models for random variates would be complete without at least one
example of the famous normal (Gaussian) distribution. There are many reasons why this
continuous distribution is famous but the main reason is that it is used so often to model
so many things.

The PDF of the normal distribution can be written in simple closed form (4.12).

GaussianPDF = N(µ, σ) =
1

σ
√

2π
exp

[
−1

2

(
y − µ
σ

)2
]

(4.12)

where y is the random variate, µ is the mean and σ is the standard deviation =
√
var. Note

that (4.12) has the correct units and is normalized. The graph of this PDF is the familiar
“bell-shaped curve” shown below in its standard form (µ = 0, σ = 1).

Considering how ubiquitous the use of the Normal distributions is in data analysis, it
is surprisingly difficult to find a large, real-world dataset that is demonstrably Normal. Al-
most always, there is some slight deviation from normality and, with a lot of data (hence, a
lot of information), this “slight” discrepancy becomes significant and spoils the goodness-
of-fit test. For this reason, and also to show that it can be done, we shall synthesize a
dataset by “drawing” 1,000 points from a standard Normal distribution. The resulting data
histogram is shown in Figure (4.9) superimposed upon the theoretical PDF (red). The fit
is not a perfect. As noted in the last chapter, even random data contain error.
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Figure 4.8: Standard Normal (Gaussian) Distribution
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Figure 4.9: Synthetic Normal(0, 1) Data, (N = 1,000)
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The preceding examples are all very simple and the real world usually is not. Conse-
quently, we often need a more elaborate model. As just one example of this, we shall use
some data well described by a mixture model, in this case a weighted combination of two
Normal distributions with two means, two standard deviations plus one parameter giving
the weight for the first component. The data consist of academic salaries, in hundreds of
dollars, collected in 1993–1994 (N = 1,161). [6]

How the five parameters were optimized will be discussed in the next chapter. For now,
we just show the PDF result (Fig. 4.10).
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Figure 4.10: A Binary Mixture Model

The model and histogram are bimodal. That is, there are two separate modes, even
though one peak is buried under a larger one. Real-world data can get very messy!

Compendium of Common Probability Distributions
One good reference for stochastic models is the Compendium that is included with this
package. This document describes many useful distributions all of which are built into
Regress+. The parametrization is also the same.
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4.3 Deterministic Models
A deterministic model is an equation describing a relationship between one or more inde-
pendent variables and a dependent (response) variable. This is, by far, the most common
sort of mathematical model with an enormous supporting literature. In this document, we
shall assume that there is only one independent variable. Even so, with the usual method-
ology, there are at least two kinds of modeling that can be done depending upon the errors
associated with the datapoints. If all of the points have “random” errors described by the
same distribution, then all points are equally weighted; otherwise, each point must have its
own weight (which must be supplied in the datafile). Once again, we shall defer parameter
optimization to the next chapter and simply present the results for two examples.

To illustrate a model for equally weighted (i.e., unweighted) data, consider the data
shown in Figure 2.6. This looks a lot like a sine wave although it is more complicated than
that. If we ignore the complications and model it as a sine wave, then the model is that
given in (4.13).

y = A sin(2πBx+ C) +D (4.13)

where A = amplitude, B = frequency = 1/period, C = phase and D = offset.
A plot of the data and model with “optimum” parameters is shown in Figure 4.11.

Clearly, this sine-wave model is not a bad fit at all and we would probably not hesitate to
use it in many applications, e.g., to determine the period.
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Figure 4.11: Sine-wave Model for Daytime Data
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As an example with weighted datapoints, that is, datapoints of differing uncertainty,
we can use the dataset shown in Figure 3.1 for the H+

2 experiment. The modeling error for
point k is distributed as Normal(0, σk). We can use the average of the 10 replicates as the
kth datapoint and the empirical 1/σk as an appropriate weight for that point.13

A very good model for this dataset, albeit more complicated than those in the literature,
is the one shown in Equation (4.14).

y = A
(
1− exp(−B(x− C))2

)E
+D (4.14)

Using its “best” five parameters, we get the plot shown below.
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Figure 4.12: H+
2 Data and Model

In this plot, the error bars are so small that they do not extend much beyond the dot
used for the data. We shall see examples later with larger errors and more obvious error
bars.

It is now time to discuss what is meant by the “best” model parameters and how they
are estimated.

13Alternatively, we could just include all of the replicates in the datafile and do an unweighted analysis.



Chapter 5

Optimizing the Model

BEFORE we can describe the procedures for computing the best model parameters,
we first must define what we mean by “best”. In frequentist statistics, the paradigm
underlying Regress+ software, the best model parameters are deemed to be those

which maximize the likelihood of observing the data that were actually observed. That
is, with any other set of parameters, the joint probability of the observed data would be
smaller. Such parameters are termed the maximum-likelihood (ML) parameters.

Maximum-likelihood parameters are computed directly when the model is stochastic
and indirectly for deterministic models.

5.1 Stochastic Models
Starting with the pdf for a stochastic model, f(y), and assuming that the N datapoints are
independent, the likelihood of a given dataset, L (y), is as follows:

L (y) =
N∏
k=1

f(yk) (5.1)

In the usual calculus procedure, the ML parameters are found by differentiating the
RHS of this equation with respect to each parameter, setting the respective derivatives
equal to zero and solving the resulting set of nonlinear equations, taking care to select the
solution that gives a maximum.

Sometimes this is easily done, especially in log space. For instance, consider the ex-
ponential distribution defined earlier (4.1). Here, there is only one parameter, θ, so, in this
case, the math is very easy.

f(y) =
1

λ
exp

(
−x
λ

)
(5.2)

Now, write down the likelihood of N exponential variates (in log space):

log (L (y)) = −N log(λ) +
N∑
k=1

yk (5.3)
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Differentiate (5.3) with respect to λ and set the derivative equal to zero.

FOC =
1

λ2

[
−Nλ+

N∑
k=1

yk

]
= 0 (5.4)

Since λ > 0, FOC will be equal to zero iff the bracketed factor equals zero. Hence,

λML =
1

N

N∑
k=1

yk = ȳ (5.5)

It can be shown by substitution (or from the second derivative) that this value gives a
maximum of the likelihood, not a minimum or a saddle point. Therefore, in the exponential
distribution, the ML value for λ is just the mean of the variates.

It seldom happens that an ML parameter value is a simple function of the data. Usually,
one must find ML values by solving simultaneous equations numerically. The exponential
distribution is an exception as are the Gaussian, Binomial and Poisson distributions (q.v.).

For stochastic models, ML parameters are considered optimal in the sense described
above. This property will be utilized again for finding the best parameters for deterministic
models.

5.2 Deterministic Models
A deterministic model relates one or more independent variables to a dependent variable.
In general, the modeling exhibits some error. Typically, this error is a combination of mea-
surement error (imperfect observation) combined with modeling error (imperfect model).

For all practical purposes, this error (ε) is random (unpredictable) so the natural way
to model the error itself is with a stochastic model. By far, the most common model used
for this purpose is a Gaussian (normal) distribution with a zero mean, N(0, σ). Whatever
the error model, the process of finding the best equation by maximizing the likelihood of
the modeling errors is called regression.

Suppose that we have some deterministic model, g(x), such as the sine wave we used
for the daytime data, shown in (4.13). Recalling that data = information + error, we can
express observation[k] as the sum of a model prediction plus an error:

yobs,k = ypred ,k + εk = g(x) + εk (5.6)

If all εk are described by the same model, e.g., N(0, σ), then we have an unwweighted
regression. If this is not true, then we get a weighted regression, e.g., εk ∼ N(0, σk).1 The
parameters of g(x) are its ML parameters iff the parameters of the error model are also
ML.

1again, ∼ is read as “is distributed as”.

http://en.wikipedia.org/wiki/Regression_analysis
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5.2.1 Unweighted Regression
We want to find the ML parameters when the error model is the same for all points. We
shall assume that we have independent Gaussian errors. Then, L (ε) is given by

L (ε) =
N∏
k=1

1

σ
√

2π
exp

[
−1

2

(εk
σ

)2]
(5.7)

In log space, the product again becomes a sum and the likelihood of the errors will be
maximized iff this sum is maximized. First, find the log(likelihood):

logLik = −
N∑
k=1

log
(
σ
√

2π
)
− 1

2

N∑
k=1

(εk
σ

)2
(5.8)

logLik will be maximized iff the second sum is minimized. However, εk = yk − g(xk).
Therefore, since σ > 0,

max (logLik) =⇒ min

[
N∑
k=1

(
yk − g(xk)

σ

)2
]

=⇒ min

[
N∑
k=1

(yk − g(xk))2
]

(5.9)

In other words, an unweighted, deterministic model with unbiased (µ = 0) Gaussian
errors will have ML parameters if and only if the last bracketed expression, the so-called
sum-squared-errors (SSE)2 is minimized. For this reason, the procedure described here is
termed least-squares. With all but the simplest models, the computation is done numeri-
cally.

As one example, the ML parameters for the daytime model (4.13) are as follows:

Table 5.1: ML Parameters for Daytime Model

A B C D
183.325 0.00273605 -1.39082 728.424

These parameters were found by searching the parameter space for an SSE minimum.
The quality of the SSE value for this dataset and model (767.92) will be discussed later
but, obviously, it is quite good (see Figure 4.11).

Other error models are sometimes used. In general, each will give an optimum set of
parameters by maximizing some function of the data and model, usually the likelihood.
For instance, robust regression sometimes describes errors as Laplacian instead of Gaus-
sian. However, such procedures are far less common than least-squares. The latter is very
conservative in its assumptions about the nature of the errors which is usually seen as
desirable.

2also called sum-squared-residuals (SSR)

http://en.wikipedia.org/wiki/Robust_regression
http://en.wikipedia.org/wiki/Laplace_distribution
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5.2.2 Weighted Regression
The only difference between weighted and unweighted regression is that the former takes
into account that fact that different datapoints have different uncertainties, typically be-
cause they have different measurement errors.

Consider the following data observed for the Hale-Bopp comet of 1996–1997 [13].

Table 5.2: Rate of Production of CN in Comet Hale-Bopp

Rate Distance from Sun Uncertainty in Rate
(molecules per second)/1025 (AU) (molecules per second)/1025

130 2.9 40
190 3.1 70
90 3.3 20
60 4.0 20
20 4.6 10
11 5.0 6
6 6.8 3

Here, the uncertainty in rate is a large fraction of the rate itself. Were one unaware of
this, or if it were ignored, then one would expect to get incorrect values for the “optimum”
parameters whatever the model.

The hardest part of accounting for variable uncertainty is simply knowing what weights
to use in the regression formula. Usually, with Gaussian errors, the weight on a datapoint
is the reciprocal of some constant multiple of σk, typically 1/σk. The sigma itself is then
a measure of uncertainty and these uncertainties are often shown on the plot as error bars.

Accounting for variable weights requires only a slight change to (5.9) since σk is no
longer the same for each point, as follows:

max (logLik) =⇒ min

[
N∑
k=1

(
yk − g(xk)

σk

)2
]

(5.10)

Here, the deviation of y from the model is normalized against its own uncertainty giving a
weighted SSE.

Looking at the table above, a likely model for rate as a function of distance is a simple
exponential model.

y = A exp(B x) (5.11)

If we ignore the uncertainties shown in the table and do an unweighted regression,
we get the results plotted in Figure 5.1. If we account for the uncertainties, the weighted
results yield Figure 5.2 (with error bars).

The unweighted regression treats all points equally even though the second point, in
particular, should not get as much weight since it has an unusually large uncertainty. In
the second plot, the curve is farther from this point (but still close to its error bar).
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Figure 5.1: Hale-Bopp Model (unweighted)
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Figure 5.2: Hale-Bopp Model (weighted)
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Before leaving this example, there is one further issue that should be discussed. It is
tempting to look at (5.11) and note that, if you take logs of both sides, you get a linear
equation for log(y).

log(y) = log(A) +B x (5.12)

Since (5.12) is algebraically equivalent to (5.11), one might think that they would give
the same parameters once the transform was undone. This is a common mistake.3 Table 5.3
lists the A and B parameters for the unweighted, weighted and (unweighted) log-transform
models. They are quite different.

Table 5.3: ML Parameters for Hale-Bopp Regressions

Regression A B
unweighted 2763.39 -0.978253
weighted 2926.11 -1.04642

log-transform 1936.35 -0.911981

A nonlinear transform such as the log transform affects large values more than small
values. In this case, points close to the Sun are affected more than those farther away.
It is possible to undo nonlinear transforms correctly but it requires a lot more work. In
contrast, linear transforms—adding a constant, multiplying by a constant or both—are
generally acceptable.4

3and ubiquitous on pocket calculators with regression capability
4but the parameters will have different units



Chapter 6

How Good is the Model?

NO modeling task is completely finished until you ascertain whether the model is
good or not. At a minimum, the model must describe the data and this requires
some quantitative goodness-of-fit metric (statistic). There are a variety of such

metrics for both stochastic and deterministic models. In this chapter, we describe those
most commonly used as well as one special kind of plot.

6.1 Stochastic Models
Since stochastic models are optimized by maximizing the likelihood of the data, one ob-
vious goodness-of-fit metric is the likelihood itself. However, it turns out that this metric
has relatively little power. In other words, it does not detect bad models very well (unless
there are outliers in the data). A good statistic is one that has, inter alia, sufficient power
to do its job adequately. The statistics we describe here are utilized for just that reason.

There are different metrics for continuous and discrete models. We treat these cases
separately.

6.1.1 Continuous Models
The most common metric used to test the goodness-of-fit of a continuous distribution to
some data is the Kolgomorov-Smirnov (K-S) statistic.

Consider again the salaries example and the mixture model used earlier (Fig. 4.10).
The corresponding CDF plot is shown in Figure 6.1. In this plot, the empirical CDF is a
gray, stepwise curve1 and the model is a smooth, black curve. Whenever a model is a poor
fit, there will be some relatively large separations between these two curves. The largest
separation, in absolute value, is defined to be the K-S statistic.

The question now is, “How large is too large?” This is a tricky question and the usual
answer is determined by what is called the sampling distribution of the statistic. When a

1With so many points, the steps are very small.
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Figure 6.1: CDF Plot for Salaries Data and Model

statistic is first developed, it is necessary to determine its values under some “standard”
conditions. These values are listed in a table and published in handbooks of various kinds.
One looks in the table to find the probability that a measured value of the statistic will be
as large (or small) as that observed. Usually, with goodness-of-fit statistics, large = bad.
By convention, a model is considered poor if its goodness-of-fit statistic has a probability
of less than 5 percent. (See Bootstrap Analysis in Chapter 7)

The catch is the validity of the “standard” conditions for the model and data in question.
Nevertheless, this is the usual procedure for testing continuous distributions.

In the salaries example, the empirical K-S value = 0.0173174. This value falls in the
85th percentile of its sampling distribution so it is not large enough to reject the adequacy
of the model. We conclude, therefore, that this model is acceptable.2

A good way to visualize the data versus a continuous model is with what is sometimes
called a probability plot. This is similar to a Q-Q plot except that the abscissa shows the
variates themselves and the ordinate shows percentiles. The probability plot for this exam-
ple is in Figure 6.2. The model is the gray line and the dots represent the datapoints. This
plot shows a good result even though the upper tail drifts off a bit. Tails usually deviate
from the bulk of the data because they constitute a small, extreme subset. One needs to be
familiar with this kind of plot, with various models and sample sizes, to appreciate when
the results are good or bad.

2Strictly speaking, a non sequitor but, again, this is the usual procedure.

https://en.wikipedia.org/wiki/Q\OT1\textendash Q_plot
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Figure 6.2: Salaries: Probability Plot for Mixture Model

To see what an unacceptable model looks like, we can use a Gaussian distribution with
this dataset instead of the mixture model. Even with the ML parameters, the K-S value is
now 0.0648411 and this falls in the 99th percentile of its sampling distribution indicating a
very poor fit. The probability plot is shown in Figure 6.3.

6.1.2 Discrete Models
The most common metric for assessing the fit of a discrete model to some data, X , is the
Chi-square(d) statistic (6.1).

χ2(ν) =

N∑
k=1

(Xobs,k −Xexp,k)2

Xexp,k

(6.1)

where obs = observed, exp = expected (from model) and ν = degrees-of-freedom (N − 1).
As one example, we can use the C-14 decay counts which we modeled as Poisson

(Fig. 4.6). This looks like a reasonable fit, judging by the histogram, but the Chi-square
test is a much better criterion. Here, χ2 = 14.8359. This value falls in the 16th percentile
of its sampling distribution which is not significant (improbably large) at all3 and so we
accept the ML Poisson model as valid.

3The expected value for Chi-square = ν.

http://en.wikipedia.org/wiki/Chi-squared_test
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Figure 6.3: Salaries: Probability Plot for Gaussian Model (Unacceptable)

6.2 Deterministic Models
Maximum-likelihood deterministic models are almost always estimated using the least-
squares procedure. To assess goodness-of-fit, the minimum SSE is compared to TSS, the
total-sum-of-squares.4

TSS =
N∑
k=1

(yk − ȳ)2 (6.2)

TSS quantifies the total variation of the data from its average. If the model “explains” all
of this variation, then there will be nothing left to explain and SSE will equal zero. An
intuitive goodness-of-fit metric is then the fraction of TSS explained, termed R2.

R2 = 1− SSE

TSS
(6.3)

Consequently, a good deterministic model will have R2 close to one. Typically, one would
like to see R2 values of 0.99 or better.

There is one note of caution here. Even when R2 is close to one, there is still the
possibility of systematic error in the model. After all, one assumes that, taken collectively,
the model residuals = yk − g(xk) are ∼N(0, σk), i.e., they are random errors. If they

4Note that TSS/N equals the variance of y.
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are random, then they should be scattered about the model curve randomly. In particular,
the signs of the residuals should be random. There should not be any obvious pattern to
consecutive runs of positive and negative residuals. This is something that can and should
be tested separately, e.g., using the runs test.

6.3 Is One Model Better Than Another?
It is often necessary to decide whether one model fits the data better than some other
model. It would be nice if there were a good way to answer this question. However, in the
context of traditional frequentist inference, there is no really good method (statistic) that
will provide an unambiguous answer.5

One statistic that is often recommended is the Akaike information criterion (AIC)
which is derived from information theory and which utilizes the log(likelihood) of the
data, given the model.

AIC = 2 (k − log(L )) (6.4)

where k is the number of parameters.
An improved variant is the corrected AIC metric, AICc, which works well for small

datasets as well as large ones.

AICc = AIC +
2 k (k + 1)

N − k − 1
(6.5)

where N is the number of datapoints.
How one computes the likelihood in this formula depends upon the specific analysis.

For instance, the likelihood in an unweighted least-squares regression is just the likelihood
of the residuals = 2 π SSE/N .

To decide which of two models is better, compute AICc in each case and choose the
model with the smaller value of AICc. Unfortunately, there are no robust criteria to decide
how much smaller AICc needs to be in order to be meaningful in a given situation.

This criterion takes the number of parameters into account. This is essential. You can,
after all, fit any dataset perfectly if you have enough parameters (see Appendix C).

5One reason why Bayesian inference is so much better. To learn more, read the free ebook cited earlier.

https://en.wikipedia.org/wiki/Wald\OT1\textendash Wolfowitz_runs_test
http://en.wikipedia.org/wiki/Frequentist_inference
http://en.wikipedia.org/wiki/Akaike_information_criterion
https://www.causascientia.org/software/MacMCMC/MacMCMC.html
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How Precise are the Model Parameters?

IN traditional, frequentist statistics, maximum-likelihood parameters are almost always
considered optimal and, in chapter 5, we have discussed ways in which such param-
eters can be estimated from the data and model. However, a given dataset is just a

sample of data and different samples will give different ML parameters and this variation
should be taken into account. We finish our discussion of modeling by considering the
precision (uncertainty) of our ML parameters.

The usual way to describe this precision is to provide a confidence interval for each
of the model parameters. In a frequentist context, this interval is interpreted to mean
the continuous interval within which there is a specified probability, P , of finding the
“true” value. Usually, P = 95 percent implying that we are “95-percent confident” that the
true value lies inside the interval. In a central confidence interval, the remaining 1 − P
probability—the probability of being wrong—is equally split between the two tails outside
the interval. One way to estimate a confidence interval is with a bootstrap analysis.

7.1 Bootstrap Analysis
In a bootstrap analysis, a large number of random bootstrap samples are synthesized. In
a parametric bootstrap, they are created using a model1; in a non-parametric bootstrap,
they are created from the data via selection-with-replacement. In both cases, the bootstrap
sample is the same size as the original data.

Each bootstrap sample is treated as though it were the original data. The output is a
matrix of parameter vectors with one row for each bootstrap sample.2 When a column
of this matrix, representing one parameter, is sorted from low to high, it yields an empir-
ical distribution for that parameter, given the model and sample size. At this point, the
simplest procedure is to determine the central confidence interval by using the confidence
limits that define the requisite tails of this distribution. When appropriate, and with a lot

1Goodness-of-fit is tested in this fashion.
2Usually, there are at least 1,000 rows/samples.
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of additional effort, more accurate confidence limits can be determined from the same
empirical distribution by correcting for bias and skewness. [4]

Note that, in a Bayesian context which we shall not discuss, there are much better ways
to estimate parameter uncertainty. For instance, this online calculator.

7.2 An Example
A good illustration of the varying precision of ML parameters can be seen in the salaries
example we considered earlier (Fig. 4.10). The model is a weighted mixture of two Normal
distributions, as follows:

PDF = pN(µ1, σ1) + (1− p)N(µ2, σ2) (7.1)

The ML values for the five parameters are listed in Table 7.1.

Table 7.1: ML Parameters for Salaries Data and Model

µ1 σ1 µ2 σ2 p
370.201 53.5986 481.630 92.5531 0.549763

The ML values shown above were estimated to six figures but these figures are not
all significant. If we perform a non-parametric bootstrap analysis, with 1,000 bootstrap
samples, and carry out the corrections referenced above, we find that the 95-percent central
confidence limits on these parameters are those shown below.

Table 7.2: Salaries: 95% Confidence Limits for ML Parameters

Parameter Lower Limit Upper Limit
µ1 362.546 383.975
σ1 45.3251 62.0710
µ2 457.440 542.227
σ2 67.9438 100.934
p 0.407607 0.767566

These intervals are quite wide in contrast to the precision implied by the values in
Table 7.1 even though this was a fairly large dataset (N = 1,161). In particular, the weight
parameter, p, is especially uncertain given that it ranges only over [0, 1].3

Estimating confidence limits requires much more effort than finding ML parameters
but, unless this part of the modeling is carried out, the parameter values reported will be
overly deceptive with regard to their precision/uncertainty.

3Weight parameters for mixtures are poorly defined when the mixture components overlap.

http://www.causascientia.org/math_stat/ProportionCI.html


Chapter 8

Summary

WE have presented here a very brief and incomplete overview of the frequentist
approach to data modeling. All of the topics discussed deserve considerably
more attention and some, such as multivariate analysis, have not been discussed

at all. Nevertheless, basic concepts have been covered and these will suffice for a very large
fraction of simple data modeling tasks.

The hyperlinks provided all contain references leading to further material that might
be useful when and if analyses turn out to be not so simple.

As noted, the state of the art is Bayesian inference, not frequentist statistics. We have
supplied references to that as well.
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Chapter 9

Overview

THIS User Guide describes the basics for installing and using Regress+. All of the
computations discussed in Part II (Modeling), and more, can be accomplished using
built-in Regress+ functionality. A wide selection of common models is hard-coded

including 21 equations and 59 distributions. In addition, a User-defined equation can be
specified. The Regress+ interface has been designed to be intuitive and to hide the math
as much as possible. For some technical details, see Appendix B.

Regress+ installation is described in this chapter. Familiarity with the MacOS GUI is
assumed.

Succeeding chapters describe the following topics:

• Input
Creating a Regress+ input file. What is valid and what is not.

• Setup
File Menu
Options available through the Setup and Parameter/Constraint dialogs.
User-defined equations

• Other Menus and Output
Graphs, Report, List file, Sample file

9.1 Installation
Regress+ is downloaded as a disk image, i.e., dmg file. Just double-click it to mount and
open.

Installation involves simply dragging Regress+ to your Applications folder. Other
items may be saved wherever convenient.

Two further steps are optional but are recommended for ease of use. The first is to
drag the Regress+ app to the Dock so that it is readily available. The second is to open the
Examples folder, select any file in the Input folder and select File/Get Info (Command-I).
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In the Get Info dialog, set Regress+ as the app associated with the selected file. Click
the Change All. . . button. Thereafter, double-clicking any file with extension in will open
Regress+ with that file as input.

Regress+ requires MacOS 10.11 (El Capitan) or greater.
These installation instructions are duplicated in the README.txt file. Release notes

are provided in the Help menu.

9.2 Examples
All of the examples cited in this User Guide have corresponding input and sample output
files in the Examples folder.



Chapter 10

Input

THERE is nothing really special about a Regress+ input file. It is just a textfile and
can be created with any software that will output plain text (ASCII, UTF-8) with
no accented or styled characters, etc. However, Regress+ does expect its contents

to be formatted in a way that its parser will understand. As a reminder, all Regress+ input
files must have the extension in. Otherwise, the file will be disabled in the file dialog and
it will be rejected when using drag-and-drop or double-clicking.

There must be at least seven points in the input file and perhaps more for some models.
This restriction is required so that the internal processing that Regress+ carries out, given
Setup options, will work all the time. With deterministic input, the seven points must be
unique (see below).

10.1 Input Format
In general, there are three kinds of records (lines) that are acceptable to Regress+: data,
comments and prediction requests. Blank lines are always ignored.

Comments must begin with a semicolon and can be either a full-line comment, with
the semicolon in column 1, or appended to a data record. Comments terminate at the end
of a record/line.

Data records and prediction requests vary depending on whether the model is stochastic
or deterministic. These cases are discussed separately below. In general, columns must
be whitespace-delimited, tabs or spaces. Comma-delimited (CSV) data are not acceptable
and will break the parser (with no error message).

It should go without saying that it is the user’s responsibility to ensure that all input is
valid. However, Regress+ does some checking of its own. Bad input files will generate an
error message and there are many reasons why a file might be bad.

We shall describe input for stochastic models and deterministic models separately.
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10.2 Stochastic Input
Stochastic input can be either continuous or discrete. The latter can also be ungrouped or
grouped.

10.2.1 Continuous Data
Continuous data are input as a column vector, one value per line. Regress+ recognizes
that the data are continuous if and only if there is a decimal point in at least one datum.
Otherwise, Regress+ will assume that the data are integers and continuous models will be
disabled.

If continuous data happen to be recorded as integers, append “.0” to one (or more) of
them. This will tell Regress+ that the data are meant to be continuous.

For an example of continuous input, see BattingAvg.in.

10.2.2 Discrete Data
Discrete data may also be input as a column vector. All values must be positive integers.1

An example is Binomial.in.
Discrete data may also be grouped. In that case, the format for a data record is

@val freq

where val is the value of the datum and freq is its frequency. The “@” symbol must be
in column 1. It is permissible to have the same val more than once in the file. Regress+
will expand grouped data to the ungrouped equivalent before processing. Grouped and
ungrouped data must not be mixed together.

For an example of grouped data, see Hyphens.in.

10.2.3 Predictions
With continuous stochastic input, Regress+ can predict the percentile of a given value, val,
once processing is complete. Requests for a predictions should follow the data (but need
not). A prediction request is formatted as follows:

? val

with the “?” in column 1.2

For an example of stochastic input with prediction requests, see BattingAvg.pred.in.

1Zero is considered positive.
2The space after the ‘?’ is optional.
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10.3 Deterministic Input
Deterministic data can be unweighted or weighted. As will be shown later (ch. 11), the
weights need not be used.

10.3.1 Data
Unweighted input consists of a matrix with two columns. The first column contains the
dependent (response) variable, y, and the second the independent variable, x.3 As noted
earlier, with deterministic data there must be at least seven unique points. This is inter-
preted to mean seven unique values of x although there is no limit as to how small the
difference may be.4

An example is Daytime.in.
Weighted input requires an additional column. Here, the third column contains, not a

weight but, rather, a measure of the uncertainty in the corresponding y-value, typically a
1-sigma estimate5 of that uncertainty.

A good example is Hale Bopp.CN.in.

10.3.2 Predictions
Regress+ can predict the value of y, given an x assuming, as always, that the x-value is
valid.6 The prediction-request format is the same as with stochastic input:

? val

with the “?” again in column 1.
Example Hale Bopp.CN.pred.in uses the same Hale-Bopp data as above but with three

requests for predicted y.

3In general, Regress+ refers to any value in the first input column as y whether the input is deterministic
or stochastic.

4within the numerical constraints of double-precision numbers
5In general, a k-sigma estimate provided that k is constant
6This is especially useful when the Confidence Intervals option has been chosen (see ch. 11).
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Setup

ONCE an input file has been successfully loaded, the first thing that appears is the
Setup dialog showing relevant options. The general appearance of this dialog and
the options available in it vary depending on the nature of the input. Regress+

makes appropriate changes and/or disables user choices, here and elsewhere, whenever
they are not applicable.

Since much of Regress+ capability requires special pre-processing, all desired options
must be selected before computations commence; there is no way to pause and change
your mind, or add an option, partway through without Canceling the analysis.1

We shall begin by describing the Setup for stochastic models, then for deterministic
models. In the latter section, we shall focus mainly on the differences between the two.

Output will be discussed in the next chapter.

11.1 Stochastic Models
Assume that we have opened the file BattingAvg.in. This input is continuous and the
Setup dialog will appear as shown in the screenshot in Figure 11.1. Although most of the
available options should be obvious, we shall go through them one by one.

11.1.1 Model
The Model button brings up a tabbed dialog with which the model may be changed if
desired.2 For theoretical reasons, the most likely model, of those available, is a Gumbel
distribution and so we choose it. The Setup dialog then reappears as shown in Figure 11.2.
Here, everything is the same except the model.

In this example, all continuous models are valid. Were even one datapoint less than or
equal to zero, then several models would be invalid and consequently disabled.

1Note also that Regress+ can do only one analysis, with one input file, at a time.
2Available stochastic models are described in the aforementioned Compendium.
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Figure 11.1: Initial Setup Dialog for BattingAvg Example

Figure 11.2: Setup Dialog with Gumbel Model
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WARNING! Given the ease with which Regress+ performs modeling, it is extremely
tempting to try one model after another until the results look good. This is a major mistake!
Standard goodness-of-fit tests, to be discussed in the next chapter, succeed only when they
are used just once. When applied repeatedly, with the same data, their output is unreliable.
One should have a priori reasons for choosing a model and this choice should be made
before modeling the data.

11.1.2 Optimization Criterion
There is a choice of two optimization criteria. By far, the most common is maximum-
likelihood which is always available. With continuous data, the alternative is to minimize
the K-S statistic instead. This option is trivial for Regress+ but is rarely used in the litera-
ture. Still, it makes for an interesting comparison. When the model is good, the K-S value
will be roughly the same regardless of the optimization criterion.

With discrete data, the alternative is to minimize the chi-square statistic.3 This, too, is
rarely done in the literature.

11.1.3 # Bootstrap Samples
Regress+ makes considerable use of bootstrapping (see Appendix B). By default, the boot-
strap sample size is 1,000. However, for more precision, this can be increased using the
counter shown.

11.1.4 Confidence Intervals
Central confidence intervals can be estimated for parameters and predictions (if any). With
stochastic models, goodness-of-fit is determined by default and the precision of model
parameters is therefore known assuming that the model is correct. This computation is a
parametric bootstrap.

If the Confidence Intervals option is chosen, Regress+ carries out a non-parametric
bootstrap analysis that does not assume that the data are correctly modeled. When the
model is good, these confidence limits will be roughly the same as those estimated by the
parametric bootstrap analysis.

Confidence intervals vary slightly from run to run. Their precision can be improved by
using a larger number of bootstrap samples.

Details are in Appendix B.

11.1.5 Generate Sample(s)
As part of a parametric bootstrap analysis, Regress+ must generate random samples from
the optimum model. This capability is exposed to the user as an option to create one or

3This choice appears only when the data are discrete.

http://en.wikipedia.org/wiki/Bootstrapping
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more such samples and save the output to a file.4

When this option is selected, it is the only analysis that is done; the usual computations
are not performed. Therefore, the initial parameters chosen (see below) are not modified
in any way.5 Also, since any model must be valid, the input data used to reach this point
in the Setup must be compatible with the desired model.

The dialog for creating samples is shown in Figure 11.3.

Figure 11.3: Sample Dialog

After the beep, create the sample document with Command-L. Samples are saved as
tab-delimited columns. Thus, the default is to save one column vector with 100 rows.

11.1.6 Positive Data
When Regress+ creates a graph (see next chapter), it always draws axes that can show all
of the data as well as most of the model curve. In some cases, the model is poor and its
plot may extend into the region where variates are negative even though the data are (and
perhaps must be) all positive. This setup option forces Regress+ to start the abscissa at
zero when it otherwise would not.6

11.1.7 Parameter Dialog
Clicking OK in the Setup dialog brings up the Parameter dialog (Fig. 11.4). Regress+
makes initial guesses for the parameter values but these can be changed. If they are
changed to invalid values, this dialog will be re-shown until they are acceptable.

Sometimes it is desired that one or more (possibly all) of the parameters be considered
constant. If the corresponding box is checked, the initial values will not be changed and
the number of parameters will be reduced accordingly. Confidence intervals cannot be
computed for constant parameters. Regress+ computations will begin as soon as the OK
button in the Parameter dialog is clicked.

4This is one way to see what a sample from the optimum model should look like.
5which means that they must be valid
6This capability is intended primarily for aesthetic purposes.
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Figure 11.4: Parameter Dialog

11.2 Deterministic Models
As an example of a deterministic model, consider again that used to describe the energy of
the hydrogen molecule ion (4.12).7 This example requires a user-defined model, discussed
in the following section, rather than a built-in model (see Appendix A).

The Setup dialog show below (Fig. 11.5) is what is available for deterministic models
when there are no prediction requests. The optimization criteria are different and predic-
tions are optional.8 The Confidence Intervals option is the same as previously described.

There are three new options.

11.2.1 Test Residuals
The residuals of the model should be random as described in Section 6.2. However, the
test is optional.

11.2.2 List Data
This option generates an output file listing the original data along with the Y-values esti-
mated by the model. The estimate with the largest residual is flagged with an asterisk.

7input file = h2p.in
8For an example with predictions, see Hale Bopp.CN.pred.in.
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Figure 11.5: Initial Setup Dialog for H+
2 Example

11.2.3 Simulated Annealing
With deterministic models, the initial parameter values default to one but this choice often
does not lead to an acceptable fit, especially when there are more than three parameters.9

Moreover, it might be difficult to make good initial guesses for the parameters. To facilitate
this process, the Simulated Annealing option permits entry of a finite range of values for
the parameters using a Constraint dialog instead of the usual Parameter dialog. If this
option is chosen here, then the Constraint dialog appears. Figure 11.6 shows this dialog
after suitable guesses have been entered. If lower bounds are set equal to upper bounds,
then the corresponding parameters will be set Constant.

Regress+ uses these constraints to perform an adaptive simulated annealing analysis.
One benefit of simulated annealing is that it is not a greedy algorithm. That is, it tries to
find a global optimum, rather than just the closest optimum. Parameter spaces are often
very convoluted, with many optima. That is why setting all parameters to one might not
converge to the desired result. Simulated annealing is not guaranteed to do better but it
usually does, provided that the constraints supplied are reasonable.

Once this phase has terminated, the constraints are released and Regress+ converges
to the optimum set of parameter estimates in its usual fashion with the chosen criterion.

Note that simulated annealing is used only to find the optimum parameters, not for the
Confidence Intervals analysis, if any.

9These defaults do not work for the h2p example.

http://en.wikipedia.org/wiki/Simulated_annealing
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Figure 11.6: Constraint Dialog with New Values

11.3 User Model
With deterministic models, Regress+ permits the selection of a user-defined equation. The
initial User dialog appears as follows:

Figure 11.7: Initial User Dialog

This dialog allows the entry of a user-defined RHS for the model. Primitive operators
are the same as in the C language plus an additional exponential operator, ˆ. Parameters
are A–J and must be used in that order. Further functionality is listed in Table 11.1. The
dependent variable, y, may not appear on the RHS. Everything is case-sensitive.
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Table 11.1: User-model Functionality

symbol description
abs absolute value
acos inverse cosine
acosh inverse hyperbolic cosine
asin inverse sine
asinh inverse hyperbolic sine
atan inverse tangent
atanh inverse hyperbolic tangent
ceil ceiling
cos cosine
cosh hyperbolic cosine
exp exponential
floor floor
log natural logarithm
log10 common logarithm
sin sine
sinh hyperbolic sine
sqrt square root
tan tangent
tanh hyperbolic tangent
atan2 inverse tangent (two-parameters)
Pi 3.14159 . . .

In all of the above, angles are assumed to be in radians.
For the H+

2 example, the user model is entered as

A*((1 - exp(-B*(x - C)))ˆ2)ˆE + D
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Output and Menus

THIS chapter discusses the various displays and files created by Regress+ as well
as the menu items. We first describe the Regress+ Display dialog, common to all
models. Thereafter, we describe various plots and files and the different outputs

available for stochastic models and deterministic models. Finally, we present a synopsis
of Regress+ menus, most of which should be obvious to experienced users.

12.1 Display
As an example, we choose the input file BattingAvg.pred.in, previously mentioned, along
with a Gumbel model. We also choose the Confidence Intervals option. Convergence is
achieved almost immediately and a Display dialog is presented as shown in Figure 12.1.

By the time this dialog appears, Regress+ has completed the initial optimization at least
three times (to ensure repeatability). It has also done a goodness-of-fit test to determine
whether the model is “acceptable”. In this case, it has completed the confidence-interval
computation as well. For this small dataset, all of this is virtually instantaneous.

The Gumbel distribution (see Compendium) has two parameters: a location parameter,
A, and a scale parameter, B. Their optimum (here, maximum-likelihood) values are shown
in the Display.1

Goodness-of-fit was estimated using a parametric bootstrap similar to that discussed
previously (ch. 7) with the 1,000 bootstrap samples synthesized from the optimum model.
Model acceptability depends on the one-sided percentile of the worse of the two observed
fit statistics (using both optimization criteria), as shown in Table 12.1.

For this dataset and model, the fit is deemed acceptable.2

Confidence intervals, if any, are pictured in the Display as a set of three nested intervals
surrounding the optimum parameter value with the outermost given numerical values. The
indicated limits correspond to the central 90-, 95- and 99-percentile confidence intervals.3

1Precision equals six significant figures or fewer, depending on the shape of the parameter space.
2Numerical values will be shown in the Report.
3These intervals are often very skewed.
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Figure 12.1: Batting Average: Display Dialog for Gumbel Model

Table 12.1: Goodness-of-fit Percentiles

Percentile (P) Assessment
P < 90 acceptable

90 ≤ P < 95 marginally acceptable
95 ≤ P < 99 unacceptable
P > 99 very unacceptable

In some cases, the entire set of six confidence limits might not be displayed. This can
happen when the estimated confidence limits fall outside the range of the vector of boot-
strap values for the goodness-of-fit statistic.4 The uncertainty of an optimum parameter is
also indicated by the thickness of the horizontal line (thinner is better).5

With deterministic models, the Display dialog has the same appearance except that the
goodness-of-fit assessment is replaced with the value of the optimization criterion, usually
R-squared.

4Possible since these are BCa intervals [4], not percentile intervals.
5Of course, none of this applies if the parameter is set Constant.
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12.2 Graphs
With continuous, stochastic models, three graphs are available using the Output/Graph
menu item (Command-G). This command brings up the default Graph window (Fig 12.2).

Figure 12.2: Default Graph Dialog for Continuous Stochastic Models

The first graph is the PDF, shown above, the second is the CDF and the third is a
probability plot as previously described. In Regress+, this third plot shows the optimum
model as a gray line and the data as black dots. Were the model perfect, the data would
fall on the line exactly. In general, the extremes of the data are usually near the line but
not on it. The latter two graphs are shown in Figures 12.3–12.4.

In the CDF and probability plots, the label on the abscissa has been edited from its
default, Y, to that shown using the Axes. . . button in the Graph window. Axes labels are,
in this case, freely editable.6 However, the range and tick marks are not editable. This is
partly to ensure that nothing is hidden in Regress+ output. In very rare cases, the top of a
graph might have been truncated.

6This is not always true with deterministic models.
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Figure 12.4: Batting Average: Gumbel Probability Plot
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With discrete, stochastic models, only a PDF graph is available. See the Example
Hyphens.in where the model is shown in black superimposed on the data histogram.

With deterministic models, the graphs are different, especially if the data are weighted.
With the weighted Hale Bopp.CN.pred.in data, modeled as Expo (Eq. 5.11), the default
graph window is as follows:

Figure 12.5: Default Graph Dialog for Weighted Hale-Bopp Exponential Model

The Axes. . . dialog now contains checkboxes for making axes logarithmic (base-10).
Regress+ enables this option automatically and only when the axis spans at least two
orders of magnitude (Fig. 12.6). The remaining checkboxes should be obvious.

Finally, with graphs for deterministic models, Regress+ might adjust the displayed
values7 of the independent variable, X, when this quantity is poorly encoded. Such adjust-
ments consist of factoring out a constant or subtracting a constant. These modifications are
reflected in the abscissa label and may not be edited out.8 This behavior is the result of the
limited space available to draw the tick labels and the requirement for a publication-quality
plot.

7but not the actual values
8It is preferable to encode data correctly before using Regress+.
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Figure 12.6: Hale-Bopp Model wiith Logarithmic Y-axis

12.3 Output Files
Regress+ can create several output files depending on the model and Setup options. All of
these are considered documents and can, therefore, be saved and/or printed directly. Note
that Regress+ cannot open any of its own files; they are purely output files.

12.3.1 Report
The primary output file is the Report (see File menu). The default Report for input file
BattingAvg.pred.in is shown in full in Figure 12.7. Additonal Setup choices will result in
a longer report. Regress+ Report files have the extension out.

All of the numerical results from Regress+ computations, except lists and samples,
are summarized in its Report. This includes the optimum parameters and the values for
whatever optimization criteria are relevant. With stochastic models, the goodness-of-fit
results are included as well.

Results for Confidence Intervals, if any, are shown next and are of similar appearance
to that for the parametric bootstrap results shown in Figure 12.7.

When there are prediction requests, the results for these9 are appended to the bottom of
the Report. In this example, there are four percentiles estimated for the Y-values requested.

9with confidence intervals, if selected
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Figure 12.7: Sample Default Report for BattingAvg.pred.in
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Other output files include the list file associated with deterministic models and the
sample file when random samples are created. Both of these have extension lst.

12.3.2 Graphs
All of the graphs discussed above are likewise documents. When saving, the standard File
dialog is modified so that the file can be saved either in PDF format (the default) or PNG
format. The former is of higher quality10 but might not be compatible with all commercial
software.11 The SaveAs. . . command (Shift-Command-S) brings up a File dialog similar
to that shown in Figure 12.8.

Figure 12.8: SaveAs. . . Dialog for Regress+ Graphs

All of the standard operations associated with saving files apply to Regress+ files.
However, the graphs are of fixed size unless modified using additional software.12

10vector graphics vs. bitmap graphics
11PDF is not always ideal on a webpage.
12Resizing PNG files sometimes results in a degradation in quality.
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12.4 Menus
Here is a summary of the menu items specific to Regress+:

File

Restart (Option-Command-R) Begin again with the Setup dialog.

Output

Report (Command-R) Create the Report.

Graph (Command-G) Create a graph.

Listing (Command-L) Create a document with the List Data results.

Flip Display (Command-F) The default Display shows only parameters A–E. If
there are more parameters (from a User-defined model), this menu item toggles
between A–E and F–J.
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What Could Possibly Go Wrong?

THE internal algorithms in Regress+ are quite robust and the software goes to great
lengths to try to be foolproof but, as you might expect, this goal is not always
realized. There are still several different kinds of things that can go wrong even

when you know what you are doing. This last condition, incidentally, is taken for granted.
All bets are off if this is not the case.

In this chapter, we describe a few of the problems that might arise.

13.1 Failure to Converge
With stochastic models, Regress+ starts with good initial values for the parameters and it
nearly always converges to the correct global optimum. However, this is not the case with
deterministic models for which the default initial values (= 1) are almost always poor. This
is especially true if a User-defined model is entered. If Regress+ does not converge, there
will be an error message to that effect.

One possible solution is simply to Restart with (or without) different initial values for
one or more parameters or use the Simulated Annealing option. Other possible solutions
are analogous to those described in the next section.

No progress can be made unless/until Regress+ converges.

13.2 Convergence to an Incorrect Solution
Sometimes, Regress+ converges but the solution found is not the true global optimum,
assuming that the latter is unique.1 There will be no error message in this case and it is up
to the user to recognize the fault.

As discussed in the previous section, one can try restarting with new initial parameter
values or simply Restart from where Regress+ left off, keeping the existing parameter
values.

1Models with trigonometric functions almost always have multiple “global” optima, all equally good.
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Alternatively, if the model is a familiar one, then some of its parameters should have
values that are reasonably well-known in advance. If this is true, then a useful technique
is to set these parameter values Constant temporarily and let the remaining parameters
converge. Then Restart, releasing one of the constant parameters so that it can attain a
better value. If this is done, one constant parameter at a time, convergence to the correct
optimum is usually achieved.

Rarely, when the global optimum is very hard to find, it might be necessary to set two
parameters Constant alternately. That is, make one Constant then the other, toggling back
and forth. This procedure does not always work but sometimes it does.

13.3 Poor-quality Graphs
A significant amount of error was expended to try an produce graphs of publication quality.
Here, too, the result is not always satisfactory especially with probability plots. With
plots of this kind, the mathematics sometimes gets in the way of nice graphics. With
left-bounded models, for example, the tick marks on the ordinate can get so compressed
that they are illegible. There is no good solution for problems of this kind because the
mathematical requirements are dominant.

In other cases, the poor quality results from poor coding of the data. This is easily
fixed by proper coding before using Regress+.

13.4 Systematic Error
As discussed in chapter 6, residuals from a deterministic model should be random, usu-
ally Normal(0, σ). When they are not, this indicates that there is some systematic error
present. This can occur even though the value of R2 is very close to one (its maximum).
If systematic error is present with 99-percent confidence, then a warning to this effect is
added to the Report.

13.5 Overparametriztion
Occasionally, a model will contain two parameters where there should be only one. For
instance, if two parameters appear only as a ratio, then that ratio should be a single param-
eter.2 When this is the case, there will be an infinite number of parameter-pairs that give
the same global optimum and there will be no unique solution. Regress+ might converge
but it will converge to an arbitrary combination of the two parameters.

The only solution for situations like this is to rewrite the model (typically, a User
model) in a different form, with fewer parameters.

2Another possibility is a scale parameter, in a denominator, with the whole fraction raised to an exponent
(another parameter).
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13.6 Wishful Thinking
Finally, there is you. It is always possible that, good intentions notwithstanding, when it
comes to modeling, your level of expertise might be insufficient to ensure success.

Regress+ makes a lot of difficult things easy. For example, entire books have been
written on methods for finding optimum parameters for a Weibull distribution yet, with a
few mouse clicks, you can not only find these parameters but assess their variability and
the goodness-of-fit of the model as well. While this is the purpose of Regress+, there are
hidden dangers.

The first is that one can use this capability unthinkingly. As an analyst, you should be
familiar with your data and the likely form that a valid model should take. However, when
sample sizes are small, the statistical power of all tests decreases and, in a given instance,
you might find any number of acceptable models solely because there is so little informa-
tion available in your dataset that even coarse distinctions are not feasible. Alternatively,
it may be that no model form suggests itself a priori.

A second, related danger arises from the plethora of models available in Regress+. As
noted earlier, it is tempting to keep trying one after the other until a good fit is achieved
or to flip from one optimization to another for the same reason or to make the even more
elementary error of disregarding the number of parameters. Regress+ does not perform
model comparison explicitly. That is, it does not enable you to determine the goodness-of-
fit of different models with, possibly, different numbers of parameters and return a metric
telling you whether one model is really better than another. This you must do for yourself.3

Lastly, there is the all-too-common error of ignoring the context of the task and con-
fusing what is significant with what is meaningful. If, for example, you have a dataset
and histogram of 1,000 variates which, given their origin, should be Gaussian and look
like they are, and Regress+ reports that a Gaussian model is “very unacceptable”, then
this result must not be overinterpreted. In such a case, Regress+ is saying only that the
discrepancies from Normality are real, not that they are of some practical consequence.
A sample of 1,000 independent observations contains enough information to make fine
distinctions, often distinctions that you may discount with impunity.

Whatever model you choose, you must be prepared to defend it. More often than not,
there will be others with conflicting ideas. If you declare that some errors are Laplacian,
not Gaussian, then eventually you might have to provide an argument why this must be
the case. Merely to reply that Regress+, or some other software package, says so will not
prove a sufficient rebuttal for an expert audience.

Beware of wishful thinking. Points that appear more or less linear are not necessarily
so. Likewise, a histogram that is vaguely symmetrical, with a hump in the middle, is not
necessarily Gaussian, even if your textbook talks about root-sum-squares and nothing else.
There is a real Universe out there, with real answers. A good analyst will try to find them.

3or use Bayesian inference software

https://www.causascientia.org/software/MacMCMC/MacMCMC.html
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Deterministic Models

Table A.1: Built-in Deterministic Models

Name Formula
Poly A + B*x + C*xˆ2 + D*xˆ3 + E*xˆ4
Expo A*exp(B*x) + C
ExpoPoly1 A*exp(B*x) + C*x + D*xˆ2 + E
ExpoPoly2 A*exp(B*x)*(x + C*xˆ2) + D
Log A*log(B*x + C)
LogPoly1 A*log(B*x) + C*x + D*xˆ2 + E
LogPoly2 A*log(B*x)*(x + C*xˆ2) +
Pow A*xˆB + C
PowRxpo A*xˆB*exp(C*x) + D
Sin A*sin(2*Pi*B*x + C) + D
SinExpo A*sin(2*Pi*B*x + C)*exp(D*x) + E
Cos A*cos(2*Pi*B*x + C) + D
CosExpo A*cos(2*Pi*B*x + C)*exp(D*x) + E
Michaelis-Menton (A*x)/(B + x)
Logistic (A*B)/(B + (A - B)*exp(-C*x))
ConsecFirstOrder A*(1 + (B*exp(-C*x) - C*exp(-B*x))/(C - B))
Conic A/(1 - B*cos(2*Pi*C*x + D)) + E
Catenary A*cosh(B*x + C) + D
Gaussian C*exp(-log(2)*(((x-A)/B)ˆ2)) + D
Lorentz C/(((x-A)/B)ˆ2+1) + D
Gaussian&Lorentza p*Gaussian + (1 - p)*Lorentz

aA: peak position, B: half-width at half-height, C: peak height above baseline, D: baseline, p: fraction
due to Gaussian component (see Example Peak.in)
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Technical Details

This appendix provides some low-level details that might be of interest to expert users who
want to know about the algorithms, etc. utilized in Regress+.

B.1 Software
Regress+ is a Macintosh (Cocoa) application (12,500 LOC) developed using Xcode 10.1.
The language is a combination of Objective-C, Objective-C++, C, C++, Flex and Bison.
The Xcode target is MacOS 10.11 (El Capitan).

This program is adaptively multi-threaded. Given k effective CPUs, one is reserved for
the top-level (main thread) and all other computations partitioned among the remaining
k−1 CPUs. This is particularly useful for bootstrapping which is an SIMD process.

Regress+ uses some functionality from the Cephes library.

B.2 Optimization
To estimate parameters, Regress+ utilizes the Nelder-Mead simplex method exclusively.
Thus, it converges in almost all cases without requiring derivatives. Also, this algorithm is
not entirely ”greedy”; it has some tendency to move away from a local optimum. [12]

With the maximum-likelihood criterion, all computations are carried out in log space
to avoid numerical overflow.

For the initial solution, Regress+ carries out three replicate iterations until the best
of the three occurs at least twice. If three of these triple-runs fail, a convergence-failure
message is sent.

Convergence requires six significant figures for all (non-constant) parameters but this
can be overridden if the response surface is too flat. In these rare instances, fewer than six
significant figures will be reported.
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B.3 Bootstrapping
Bootstrapping consists of estimating the variance of statistical measures by generating a
large number1 of synthetic, random2 “bootstrap samples”, each one having the same size as
the original dataset, and using these in addition to the original dataset. Regress+ employs a
parametric bootstrap to assess goodness-of-fit for stochastic models and a non-parametric
bootstrap to estimate confidence intervals.

In general, the accuracy of bootstrapping increases with bootstrap-sample size.

B.3.1 Parametric Bootstrap
A parametric bootstrap sample is synthesized by drawing random variates from the opti-
mum (modeled) distribution. Each sample is processed in exactly the same way as was
the original dataset, including the computation of the goodness-of-fit metric. When a large
number of the latter are sorted from low to high, the sorted vector comprises an empir-
ical sampling distribution for this metric, given all the other conditions in the problem,
especially dataset size.

As noted earlier, the one-sided percentile of the value of the original fit metric is com-
puted directly from this empirical distribution. Any percentile less than 90 is considered
“acceptable”.

B.3.2 Non-parametric Bootstrap
A non-parametric bootstrap sample is synthesized by drawing values from the original
dataset, with replacement, until their number equals that of the original dataset.3

With stochastic models, this involves selecting the datapoints directly.
With deterministic models, the procedure is based on the error model of the residuals.

For each Y-value in the dataset, a random draw is made from the vector of N residuals, with
replacement, and added to the Y-value. If the regression is weighted, then each weighted
residual is first unweighted according to the uncertainty in the datapoint from which it
came. The resulting normalized residual is re-weighted when added to a Y-value using the
uncertainty of the latter.

In Regress+, the empirical distributions of parameter values resulting from a non-
parametric bootstrap are not used directly because it is known that this distribution is both
biased and skewed. To correct these, the BCa technique [4] is utilized which requires a
preliminary jackknife computation.4

The BCa procedure outputs new indices in the empirical sampling distribution for con-
fidence limits for the pth percentile. Rarely, a BCa index will be outside the range of the

1Regress+ default = 1,000.
2The pseudo-random number generator is MT19937.
3Obviously, small datasets give rise to samples with several duplicate values.
4During this process, the Regress+ Display shows the message, “Initializing Confidence Intervals”.

http://en.wikipedia.org/wiki/Bootstrapping
http://en.wikipedia.org/wiki/Resampling_(statistics)
http://en.wikipedia.org/wiki/Mersenne_twister
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empirical vector from which it was computed. When this happens, the Regress+ Report
will show that confidence limit bounded with a paren instead of a bracket and the Display
will have fewer than six such limit indicators. Sometimes, it is possible to correct this
situation by increasing the number of bootstrap samples (in the Setup dialog).
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Illustration of Weierstrass Theorem

The Weierstrass Theorem guarantees that you can find a model that will fit any dataset
perfectly if you try hard enough. All you need to reproduce N points is a polynomial with
N parameters. Then, you will fit everything—noise included.

One can easily illustrate (not prove) this theorem by generating random values for
X and Y, pretending that these variates constitute ordered pairs then showing that it is
possible to find a polynomial that returns all of these points exactly.

For example, the integer values shown below were generated randomly, with X in
[0–50] and Y in [0–20], uniformly distributed in both cases.

x 49 36 41 9 50 15 2 5 30 43
y 19 1 7 12 17 16 10 14 18 13

The desired polynomial is

y =
20438537504873

2351639402112
− 6664212737543216143

4251999202958707200
x+

5849971169202443981

3270768617660544000
x2

− 1584270345683457882731

3826799282662836480000
x3 +

3354997464750261679

80564195424480768000
x4

− 1269102370411287871

588738351178897920000
x5 +

47163217558597193

765359856532567296000
x6

− 2768183843707

2830472842206240000
x7 +

222827171803

27831267510275174400
x8

− 1164450797

44757886346933760000
x9

(C.1)

The fit, of course, is perfect (see Figure C.1). However, such a polynomial is useless as
a model. For instance, it is extremely unlikely that it would predict additional datapoints
with acceptable accuracy.
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Figure C.1: One Example of the Weierstrass Theorem
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