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This is a brief synopsis of the examples included with the MacMCMC (v1.6) package.
Details and output for each to follow. Goodness-of-fit plots created by MacMCMC show,
where requested, the (optional) 95-percent credible interval band for predicted values of
future observations. With one exception (Fig. 27), marginal plots are raw (not smoothed).

Unless otherwise noted, all examples used the default run options. Runtimes1 cited
include the MCMC run, refining the MAP parameters, integration to get the marginal
likelihood, unless relabeled, and plotting the first marginal. Runtimes varied from 2 s
(TriplePoint) to 10 m 30 s (Salaries).

Table 1: Examples

1 Body Height (cm) vs. weight (kg) of adult men
2 Carbon-14 14C specific activity (counts/min-g) vs. age (years)
3 Daytime Daytime in Boston, MA, USA (min) vs. day number
4 Enzyme Concentration vs. rate
5 FishCount Count of fish caught
6 Gumbel US major-league baseball: best batting averages (1876-2019)
7 Hale-Bopp Cyanide radial release: rate vs. distance
8 Hyphens Count per page of line-ending hyphens
9 Iris Fischer’s iris data

10 Lizards Capture-recapture data
11 MP Historical melting point data for n-octadecane
12 NormalTemp Normal body temperature for adult males
13 Salaries USA college faculty
14 SAT Northern Viriginia, USA, schools (2014)
15 TriplePoint Data for the triple-point temperature of n-nonadecane

Table 2: Functionality vs. Examples

Functionality Example #
(or example type) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Continuous Distribution • • • • • • • •
Discrete Distribution • • •

Equation • • • •
BivariateNormal Dist. • •
Generic Distribution • • • •

Truncated Distribution •
Mixture Distribution • • •
Relabeled Mixture • •

Goodness-of-fit • • • • •
Multidimensional Input • •

Extras • • • • •

1on a standard 2017 iMac
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1 Body
Here, each datum is a {weight, height} ordered pair so the likelihood is bivariate.
Runtime: 2 m 30 s

Model 1: Weight-height Pairs

1 Constants:
2 N = 247; // # of points (rows)
3 Data:
4 WtHt[N][2];
5 Variables:
6 m1, m2, sig1, sig2, rho, row;
7 Priors:
8 m1 ˜ Uniform(50, 100);
9 m2 ˜ Uniform(150, 250);

10 sig1 ˜ Jeffreys(0.1, 20);
11 sig2 ˜ Jeffreys(0.1, 20);
12 rho ˜ Uniform(-1, 1);
13 Likelihood:
14 for (row, 1:N) {
15 WtHt[row][] ˜ BivariateNormal(m1, m2, sig1, sig2, rho);
16 }
17 Extras:
18 Monitored:
19 m1, m2, sig1, sig2, rho;

Reports are structured as shown on the following page. The sample size reported does
not include thinned iterations.2 The marginal likelihood is quite small in this example
mainly because there are a lot of points.

This run used the default parameters. Unless otherwise noted, the same is true for all
of these examples. MAP parameters should be stable since they are further optimized.
Gelman-Rubin statistics should all be very close to one.

Output precision and smoothness of marginal plots can be improved by collecting a
larger sample of the posterior.

The trace can be used to gather further information and/or to make additional plots. To
show this, a bivariate plot was constructed3 showing the data and (mean) posterior model
together (Fig. 5).

2i.e., this run comprised 2,500,500 iterations (thinned iterations not saved)
3using Mathematica™ with SetAxes
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Data: bodydata.dat Model: body.mcmc Nov 8, 2022 at 2:30:41 PM

# chains x sample/chain: 175 x 1429 = 250075 (thinning = 10)

log(marginal likelihood): -1745.24

m1
MAP, Mean, Median, Mode, G-R stat: 78.1445 78.1489 78.1473 78.0305 1
Credible Intervals: 76.4312 76.8207 77.0334 79.2397 79.4552 79.9107

m2
MAP, Mean, Median, Mode, G-R stat: 177.745 177.747 177.746 177.8 1.001
Credible Intervals: 176.565 176.845 176.994 178.504 178.649 178.941

rho
MAP, Mean, Median, Mode, G-R stat: 0.533205 0.528988 0.530497 0.524484 1.025
Credible Intervals: 0.404884 0.438104 0.454052 0.604286 0.616632 0.639718

sig1
MAP, Mean, Median, Mode, G-R stat: 10.4644 10.5472 10.529 10.4596 1.002
Credible Intervals: 9.40211 9.6084 9.7682 11.3268 11.4731 11.8627

sig2
MAP, Mean, Median, Mode, G-R stat: 7.15051 7.20666 7.19477 7.15361 1.006
Credible Intervals: 6.4119 6.57106 6.67634 7.74094 7.84504 8.08568

Figure 1: A Typical Report

Figure 2: Marginal for Correlation Coefficient
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Figure 3: Marginals for Weight Dimension
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Figure 4: Marginals for Height Dimension
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Figure 5: Goodness-of-fit for Body Model
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2 Carbon-14
Specific activity of 14C with errors in independent as well as dependent variable. Here, the
default burn-in setting was insufficient (did not reach equilibrium) so it was doubled.
Runtime: 1 m 54 s

Model 2: Carbon-14 Specific Activity

1 Constants:
2 N = 18, // # of points
3 ln2 = log(2);
4 Data:
5 y[N], sigY[N], t[N], sigT[N];
6 Variables:
7 trueT[N], mu[N], A, halfLife, i;
8 Priors:
9 // prior info

10 A ˜ Normal(12.5, 0.23);
11 halfLife ˜ Normal(5720, 47);
12 // uncertain "ground truth"
13 for (i, 1:N) {
14 trueT[i] ˜ Jeffreys(100, 10000);
15 }
16 Likelihood:
17 for (i, 1:N) {
18 t[i] ˜ Normal(trueT[i], sigT[i]);
19 mu[i] = A*exp(-(ln2/halfLife)*trueT[i]);
20 y[i] ˜ Normal(mu[i], sigY[i]);
21 }
22 Extras:
23 Monitored:
24 A, halfLife;
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Figure 6: Marginals for 14C Activity Model Parameters
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3 Daytime
Daytimes, rounded off to the nearest minute, over three years modeled as sinusoidal which
is almost correct. Note that parameter sigma includes the known quantization variance
in addition to the unknown model variance. Here, the (optional) goodness-of-fit plot is
created. Also, as an Extra, a prediction is made for Daytime[1].
Runtime: 34 s

Model 3: Daytime for Boston, MA, USA

1 Constants:
2 N = 43, // # of points
3 qVar = 1/12; // quantization variance
4 Data:
5 day[N], daytime[N];
6 Variables:
7 mu[N], A, P, phi, D, procVar, sigma, pred1, i;
8 Priors:
9 A ˜ Uniform(0, 720);

10 P ˜ Normal(365.25, 1);
11 phi ˜ Uniform(-Pi/2, 0);
12 D ˜ Uniform(0, 1440);
13 procVar ˜ Jeffreys(0.1, 50);
14 Likelihood:
15 sigma = sqrt(procVar + qVar);
16 for (i, 1:N) {
17 mu[i] = A*sin(2*Pi*day[i]/P + phi) + D;
18 daytime[i] ˜ Normal(mu[i], sigma);
19 }
20 Extras:
21 pred1 = A*sin(2*Pi/P + phi) + D;
22 Monitored:
23 A, P, phi, D, sigma, pred1;
24 Goodness:
25 gdnsY = A*sin(2*Pi*gdnsX/P + phi) + D;

To create a goodness-of-fit plot, the dummy symbols gdnsX and gdnsY are used to
enable the user to specify the variables to appear on the abscissa and the ordinate, resp.
The default is to use mean parameter estimates for the model curve in this plot. In this
case, the fit is so good that the 95-percent credible interval band is nearly invisible.
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Figure 7: Goodness-of-fit for Sinusoidal Model

Figure 8: Posterior Prediction for Daytime[1]
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Figure 9: Marginals for Amplitude and Offset
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Figure 10: Marginals for Period and Phase
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Figure 11: Marginal for Combined Sigma
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4 Enzyme
Here are two models describing the activity of an enzyme as a function of its concentration.
The first model includes measurement error only; the second adds model error. We shall
use the marginal likelihoods of the two to do a model comparison so as to determine, in a
robust fashion, which model is better (more credible). The R-squared metric is computed
as an Extra.
Runtime: 7 s (model 1), 11 s (model2)

Model 4: Enzyme Activity (model 1)

1 // Simple model: measurement error only
2 Constants:
3 N = 14, // # of points
4 TSS = 420.05; // total_sum_squares
5 Data:
6 conc[N], rate[N], sigma[N];
7 Variables:
8 mu[N], A, B, err, ESS, RSq, i;
9 Priors:

10 A ˜ Jeffreys(1, 100);
11 B ˜ Jeffreys(1, 100);
12 Likelihood:
13 for (i, 1:N) {
14 mu[i] = (A*conc[i])/(B + conc[i]);
15 rate[i] ˜ Normal(mu[i], sigma[i]);
16 }
17 Extras:
18 ESS = 0;
19 for (i, 1:N) { // weighted error
20 err = (rate[i] - mu[i])/sigma[i];
21 ESS = ESS + err*err; // error_sum_squares
22 }
23 RSq = 1 - ESS/TSS;
24 Monitored:
25 A, B, RSq;

Model 2 is shown on the following page †
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Model 5: Enzyme Activity (model 2)

1 // Measurement error plus (hypothetical) model error
2 Constants:
3 N = 14, // # of points
4 TSS = 420.05; // total_sum_squares
5 Data:
6 conc[N], rate[N], sigma[N];
7 Variables:
8 mu[N], A, B, sig, err, ESS, RSq, i;
9 Priors:

10 A ˜ Jeffreys(1, 100);
11 B ˜ Jeffreys(1, 100);
12 sig ˜ HalfNormal(5);
13 Likelihood:
14 for (i, 1:N) { // with RMS error
15 mu[i] = (A*conc[i])/(B + conc[i]);
16 rate[i] ˜ Normal(mu[i], sqrt(sigma[i]ˆ2 + sigˆ2));
17 }
18 Extras:
19 ESS = 0;
20 for (i, 1:N) { // RMS-weighted error
21 err = (rate[i] - mu[i])/sqrt(sigma[i]ˆ2 + sigˆ2);
22 ESS = ESS + err*err; // error_sum_squares
23 }
24 RSq = 1 - ESS/TSS;
25 Monitored:
26 A, B, sig, RSq;

The figures in Table 3 show a comparison of the parameter values and also illustrate
relabeling of plot axes. Table 4 shows some quantitative comparisons.
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Table 3: Marginals for Enzyme Model Parameters

Table 4: Posterior Values for Enzyme Models

Model Parameter Estimate 95% Credible Interval
MAP Mean Lower Limit Upper Limit

A 74.3387 74.9080 67.9552 82.1232
1 B 29.8825 30.5384 23.8795 37.4809

RSq 0.925168 0.920465 0.9109001 0.925228
A 76.4444 78.0646 66.9975 89.9513

2 B 33.3419 35.5137 23.3249 49.0680
RSq 0.970641 0.970092 0.949538 0.988485
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Credible intervals for model 2 are wider and marginal plots broader since this model
incorporates two sources of error. Nevertheless, as we show below, it is a much better
model.

A picture is always nice (even if you have to create it offline).
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Figure 12: Another Comparison of the Two Models

In this run, the log(marginal likelihood) values for models 1 and 2 were −52.3626 and
−47.2738, respectively.4 The fact that model 2 has a larger marginal (global) likelihood
indicates that it is preferred (more credible) in spite of the increased number of parameters.

We can (and should) be even more quantitative, as follows:

odds model 2 better ≡ oddsM2 = exp(−47.2738− (−52.3626)) = 162.195

Hence,

Prob(model 2 better) =
oddsM2

1 + oddsM2
= 0.99387

4There should be very little variation from run to run.
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5 FishCount
The data for this model came from a survey of 250 campers to see how many fish they
caught. Most replied “zero”, in some cases because they did not even go fishing! The data
are modeled using a zero-inflated Poisson (ZIP) distribution. The latter is not a particularly
good model here but does illustrate a mixture model for discrete count data. The weight
parameter, wt, refers to the non-Poisson component of the mixture.

Since the zeroes are special, the data were sorted and the likelihood split accordingly
using a Generic distribution for both parts.
Runtime: 50 s

Model 6: FishCount

1 Constants:
2 N = 250, // # of points
3 Nzeroes = 142;
4 Data:
5 count_[N];
6 Variables:
7 lambda, wt, temp, i;
8 Priors:
9 lambda ˜ Exponential(5);

10 wt ˜ Uniform(0, 1);
11 Likelihood:
12 for (i, 1:Nzeroes) {
13 temp = wt + (1 - wt)*exp(-lambda);
14 count_[i] ˜ Generic(log(temp), 0, 100);
15 }
16 for (i, Nzeroes+1:N) {
17 temp = count_[i];
18 count_[i] ˜ Generic(log(1 - wt) + temp*log(lambda)
19 - logFactorial(temp) - lambda, 0, 100);
20 }
21 Extras:
22 Monitored:
23 lambda, wt;

The mean weight was 0.567 which gives a count of 142 and suggests that all zeroes
came from the non-Poisson component which seems unlikely. After all, some campers
who did go fishing did not catch anything. The model could use some improvement.

Marginal plots are shown in Figure 13.
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Figure 13: Marginals for FishCount
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6 Gumbel
Another example of a distribution not included in the built-in repertoire of MacMCMC.
The data are the season batting averages of the batting champions for US major-league
baseball for the years (1876–2019). The Gumbel distribution is usually quite good at
modeling record values of quantities that are normally distributed and seems a reasonable
choice for this dataset.
Runtime: 33 s

Model 7: Gumbel Model for Best Batting Averages

1 Constants:
2 N = 144; // # of points
3 Data:
4 x[N];
5 Variables:
6 a, b, z, i;
7 Priors:
8 a ˜ Uniform(0, 1);
9 b ˜ Uniform(0, 1);

10 Likelihood: // Gumbel
11 for (i, 1:N) {
12 z = (a - x[i])/b;
13 x[i] ˜ Generic(-log(b) + z - exp(z), 0, 1);
14 }
15 Extras:
16 Monitored:
17 a, b;

This is the simplest example of the Generic distribution implemented by MacMCMC.
The first argument is the (natural) log of the probability density function (PDF). The two
remaining arguments are taken as bounds for a uniform distribution from which values are
selected to initialize the model. Were this a built-in distribution, MacMCMC would know
how to select random variates for the initialization phase since there would be enough
information coming ultimately from founder nodes.

Figure 14 shows the two marginals and Figure 15 shows a goodness-of-fit plot (created
offline). MacMCMC cannot create such a plot from a Generic distribution.
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Figure 14: Marginals for the Gumbel Parameters
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Figure 15: Goodness-of-fit for Gumbel Model
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7 Hale-Bopp
This example illustrates an analysis which, in a frequentist context, would be treated as
nonlinear, weighted least-squares. The data come from observations of the release of
cyanide radical (CN) from the comet Hale-Bopp as it approached the sun in 1995. There
are only seven points and a large amount of measurement error. The goodness-of-fit
plot (Fig. 18) shows a very wide 95-percent credible interval band. For comparison, the
(weighted) R-squared metric is computed as an Extra.
Runtime: 3 s

Model 8: Hale-Bopp

1 Constants:
2 N = 7, // # of points
3 TSS = 628.66; // total_sum_squares
4 Data:
5 rate[N], distance[N], sig[N];
6 Variables:
7 mu[N], A, B, err, ESS, RSq, i;
8 Priors:
9 A ˜ Jeffreys(100, 10000);

10 B ˜ Jeffreys(0.1, 10);
11 Likelihood:
12 for (i, 1:N) {
13 mu[i] = A*exp(-B*distance[i]);
14 rate[i] ˜ Normal(mu[i], sig[i]);
15 }
16 Extras:
17 ESS = 0;
18 for (i, 1:N) {
19 err = (rate[i] - mu[i])/sig[i]; // weighted error
20 ESS = ESS + err*err; // error_sum_squares
21 }
22 RSq = 1 - ESS/TSS;
23 Monitored:
24 A, B, RSq;
25 Goodness:
26 gdnsY = A*exp(-B*gdnsX);
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Figure 16: Marginals for the Hale-Bopp Model Parameters
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Figure 17: Marginal for R-squared

Figure 18: Hale-Bopp Goodness-of-fit (with 95% credible interval)

27



8 Hyphens
The data for this example are the number of line-ending hyphens on each page of a book
that I was reading for all pages full of text. The model is Poisson which was just a guess.
The goodness-of-fit plot shows how good a guess it was. Predictions are made for all
observed values of these counts (0–8).5

The data and predictions are here forced to be integers by affixing an underscore to the
symbol. This affects the Report and all plots for such variables.
Runtime: 26 s

Model 9: Hyphens

1 Constants:
2 N = 378, // # of points
3 logN = log(N);
4 Data:
5 hpp_[N];
6 Variables:
7 lambda, pred_[9], logPoisson, i;
8 Priors:
9 lambda ˜ Gamma(3, 3);

10 Likelihood:
11 for (i, 1:N) {
12 hpp_[i] ˜ Poisson(lambda);
13 }
14 Extras:
15 // Compute in log space to avoid possible overflow.
16 for (i, 0:N) {
17 logPoisson = logN + i*log(lambda) - lambda - logFactorial(i);
18 pred_[i] = rnd(exp(logPoisson)); // round
19 }
20 Monitored:
21 lambda, pred_[0], pred_[];
22 Goodness:
23 gdnsX_ ˜ Poisson(lambda);

Figures 19 and 20 show the marginal for lambda as well as the goodness-of-fit plot
(plus credible interval). Figure 21 shows the marginal for predictions of pred [0] and the
mode, pred [2].

5The prediction for pred [0] is computed separately because the pred [] syntax starts with one.
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Figure 19: Marginal for lambda

Figure 20: Goodness-of-fit for Hyphens Model
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Figure 21: Posterior Predictions for Zero Count and Mode (two count)
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9 Iris
This example uses the well-known Iris dataset of Fischer describing 150 samples of three
species of iris (50 of each). This is a classification problem with a known answer.

For a MacMCMC example, two principal components were computed from the data
accounting for nearly 98 percent of the observed variation.6 Therefore, prior information
suggests that a bivariate mixture with three components should be a very good model.
Here, we use the built-in BivariateNormalMixture distribution.

The BivariateNormal distribution has five parameters: two means, two sigmas and one
correlation coefficient (see pg. 4). Therefore, a mixture of these with three components has
17 parameters, including two (assumed) unknown weights. With 17 parameters and only
150 points, one should not expect wonderful results. Typically, 30 points per parameter
are desirable and mixtures demand even more information, for the weights especially.
Fortunately, “ground truth” is known so a goodness-of-fit plot should be revealing.

In this analysis, there is a special problem known as label switching which occurs
when the identity (label) of two components are occasionally interchanged. This can easily
happen because a logPosterior value for a mixture does not depend on the labeling given to
the components. The problem is particularly severe when the mixture is homogeneous (all
components of the same analytical form). Also, it is not peculiar to MCMC; it happens
with maximum-likelihood analyses as well. Algorithms to undo this switching are an
ongoing subject of research. Currently, there is no perfect solution. In fact, there is no
perfect solution in general since nothing prevents datapoints in different components from
overlapping. In that case, component identity is not even well-defined.

MacMCMC implements mixture relabeling for its built-in mixtures (see User Guide).
When the output is relabeled, there will be two trace files, original and relabeled. There
will also be an additional output file with an entry for each datum giving the probability
that it “belongs” to each of the components.

The model is shown on the following page. In this mixture model, the weights are
computed “manually” using an auxiliary variable, theta (see lines 24–27). Note, however,
that weights may not be monitored since relabeling is going to change them.

Figure 22 shows a contour plot of the data as well as the (mean) solution. The color
coding reflects the known answer. It appears that this model does a good job of classifying
the three species. There is little overlap.

The marginals are collected in Figure 23. This model makes the sigmas all the same.
There are not enough points to do anything more elaborate.
Runtime: 7 m 8 s (including relabeling)

6The ebook Data, Uncertainty and Inference referenced on this webpage provides more details.
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Model 10: Iris

1 Constants:
2 N = 150, // # of points (rows)
3 nc = 3, // # of components
4 sq = sqrt(N/nc);
5 Data:
6 pc1pc2[N][2];
7 Variables:
8 m1[nc], m2[nc], sig1[nc], sig2[nc], rho[nc], wt[nc],
9 theta, s, mum1, mum2, mum3, row, i;

10 Priors:
11 s ˜ Gamma(3, 0.5);
12 mum1 ˜ Normal(-8, s/sq);
13 mum2 ˜ Normal(-6, s/sq);
14 mum3 ˜ Normal(-3, s/sq);
15 m1[1] ˜ Normal(mum1, s);
16 m1[2] ˜ Normal(mum2, s);
17 m1[3] ˜ Normal(mum3, s);
18 for (i, 1:nc) {
19 m2[i] ˜ Normal(5.5, s/sq);
20 sig1[i] = s;
21 sig2[i] = s;
22 rho[i] ˜ Uniform(-1, 1);
23 }
24 theta ˜ Uniform(0, 1);
25 wt[1] ˜ Uniform(0, 0.5);
26 wt[2] = theta*(1 - wt[1]);
27 wt[3] = 1 - wt[1] - wt[2];
28 Likelihood:
29 for (row, 1:N) {
30 pc1pc2[row][] ˜ BivariateNormalMixture(m1[], m2[],
31 sig1[], sig2[], rho[], wt[], nc);
32 }
33 Extras:
34 Monitored:
35 m1[], m2[], sig1[], sig2[], rho[];
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Figure 22: Iris Posterior Contours
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Figure 23: Collected Marginals
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10 Lizards
The dataset for this example are capture-recapture counts of horned lizards in a fixed area.
The purpose of the experiment, repeated for a total of 14 occasions, was to estimate the
population of lizards. There is a large literature on this subject.

The likelihood suggested by analyses of this sort would typically be multinomial, with
a probability for each value of n—the number observed in each category. Sadly, it cannot,
in this case, be a simple multinomial since the n[0] category here represents lizards never
captured for which data are obviously missing!

The model has to be more complicated so we compute some parts “by hand”.
Runtime: 6 s

Model 11: Lizards

1 Constants:
2 J = 14, J1 = J+1, Nobs = 68;
3 Data: // augmented for unobserved
4 n_[J1];
5 Variables:
6 N_, p, logLikTerm[J1], logp, log1mp, k;
7 Priors:
8 N_ ˜ DiscreteUniform(68, 150);
9 p ˜ Uniform(0, 1);

10 Likelihood:
11 // Multinomial EXCEPT that there is an unobserved category!
12 // logLikelihood computation
13 logp = log(p);
14 log1mp = log(1-p);
15 for (k, 1:J) { // binomial bin probability
16 logLikTerm[k] = n_[k]*(k*logp + (J-k)*log1mp);
17 }
18 // remaining terms
19 logLikTerm[J1] = logFactorial(N_) - logFactorial(N_ - Nobs)
20 + J*(N_ - Nobs)*log1mp;
21 // likelihood statement
22 for (k, 1:J1) {
23 n_[k] ˜ Generic(logLikTerm[k], 0, 100);
24 }
25 Extras:
26 Monitored:
27 N_, p;
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Figure 24: Marginal for Lizard Population

Figure 25: Marginal for Capture Probability

Mean estimates are N = 82 and p = 0.116. Since there were 68 lizards observed, there
were an estimated 14 that went unobserved even after 14 tries. Clearly, horned lizards are
hard to capture.
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11 MP
Melting point of n-octadecane. Measurements with varying, known measurement error.
This is a typical metrology analysis where the unknown is a value that should be a constant.
Runtime: 3 s

Model 12: Melting Point of n-Octadecane

1 Constants:
2 N = 35; // # of points
3 Data:
4 MP[N], sig.meas[N];
5 Variables:
6 trueMP, i;
7 Priors:
8 trueMP ˜ Uniform(295, 305);
9 Likelihood:

10 for (i, 1:N) {
11 MP[i] ˜ Normal(trueMP, sig.meas[i]);
12 }
13 Extras:
14 Monitored:
15 trueMP;

The marginal for trueMP is presented in Figure 26.
When a raw marginal plot is considered “too rough” for show-and-tell, it may be

smoothed as shown in Figure 27. MacMCMC performs smoothing in Fourier space.
Note that the abscissas on these two marginal plots were not edited although that is a

built-in capability. MacMCMC will automatically insert an offset onto an axis whenever
failure to do so would result in tick labels that are too long. Very often, an analyst would
do this sort of encoding ahead of time so as to increase the precision of the analysis by
eliminating unnecessary (redundant) digits in the data. In MacMCMC , all variables are
double-precision internally (roughly, 16 decimal digits of precision) so no harm done!
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Figure 26: Marginal for trueMP

Figure 27: Smoothed Marginal for trueMP
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12 NormalTemp
This is simply an analysis of a set of 65 temperatures of adult males. These are modeled
as Normal (Gaussian) with both parameters unknown. We include this trivial example
because it shows a goodness-of-fit plot for a continuous distribution. MacMCMC uses a
standard q-q plot for this purpose.

Here, as in most of these examples, the priors (lines 8–9) are intended to be vague.
Runtime: 9 s

Model 13: Normal Temperature

1 Constants:
2 N = 65; // # of points
3 Data:
4 y[N];
5 Variables:
6 mu, sigma, j;
7 Priors:
8 mu ˜ Normal(100, 2);
9 sigma ˜ Jeffreys(0.01, 10);

10 Likelihood:
11 for (j, 1:N) {
12 y[j] ˜ Normal(mu, sigma);
13 }
14 Extras:
15 Monitored:
16 mu, sigma;
17 Goodness:
18 gdnsX ˜ Normal(mu, sigma);

Marginals and goodness-of-fit are shown on the following page. A Normal distribution
for the likelihood was a good choice, as expected.
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Table 5: Marginals for Normal Temperature

Figure 28: Goodness-of-fit for Normal Temperature

In the goodness-of-fit plot above, the credible-interval band shows the posterior-pedictive
uncertainty for a measured temperature with the value given on the abscissa.7 For a more
obvious example, see page 50.

7In MacMCMC, the band-height limits are estimated using a random sample of 1,000 rows (parameter
vectors) from the trace along with the value on the abscissa.
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13 Salaries
These data comprise a set of salaries (in hundreds of dollars) obtained from a survey of
college faculty in the USA. Preliminary results (prior information) suggested that such
data might best be described as a mixture of two Normal distributions. The model below
uses the built-in NormalMixture distribution. The MCMC run is, by default, followed by
a relabeling phase to try and correct the expected label switching (see pg. 31).
Runtime: 10 m 30 s (including relabeling)

The data, shown in Figure 29, look like a mixture of two Normal distributions but they
are severely overlapping which will make this a difficult analysis.
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N = 1,161

Figure 29: Salaries Data

The big problem is how to specify the two means without getting them mixed up. A
common practice is to force the second mean to be greater (or smaller) than the first. For
instance, priors might be

mean[1] ∼ Uniform[200, 600]
mean[2] ∼ Uniform[mean[1], 600]

(1)

This works well when the means are far apart but, otherwise, results in marginals for the
means that are skewed more than they should be. We shall try a simpler model in which
nothing special is done in this regard. See model 1, shown below.
Runtime: 10 m 30 s (including relabeling)
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Model 14: Salaries (model 1)

1 Constants:
2 N = 1161, // # of points
3 nc = 2; // # of components
4 Data:
5 salary[N];
6 Variables:
7 mean[nc], sigma[nc], wt[nc], i;
8 Priors:
9 for (i, 1:nc) {

10 mean[i] ˜ Uniform(200, 600);
11 sigma[i] ˜ HalfNormal(50);
12 }
13 wt[1] ˜ Uniform(0.25, 0.75);
14 wt[2] = 1 - wt[1];
15 Likelihood:
16 for (i, 1:N) {
17 salary[i] ˜ NormalMixture(mean[], sigma[], wt[], nc);
18 }
19 Extras:
20 Monitored:
21 mean[], sigma[];

This mixture model has priors that are intentionally vague. As always, this means that
all useful information comes only from the data. One result of this is that MacMCMC had
to be run many times before the relabeling algorithm worked successfully, giving unimodal
marginals for the parameters. (In this case, failure gives bimodal marginals.)

The final marginals are compared in Figure 30.
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Figure 30: Marginals for Salaries Mixture (model 1)
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Even with a relabeling algorithm, there is a much better idea for mixtures such as
this. Consider again the forcing strategy shown in (1). We can soften the constraint. Just
make the model hierarchical by applying the constraint to the “grandparents” of the means
instead of to the “parents”. One way to do this is shown below in Salaries (model 2). Here,
gp refers to the “grandparents”. The relationship should be clear from lines 10–15.

Model 2 simplifies the trace making relabeling much more efficient so that only one or
two runs are needed to give the desired results.
Runtime: 16 m 30 s (including relabeling)

Model 15: Salaries (model 2)

1 Constants:
2 N = 1161, // # of points
3 gpsig = sqrt((400ˆ2)/(12*N)), // for std. error
4 nc = 2; // # of components
5 Data:
6 salary[N];
7 Variables:
8 mean[nc], sigma[nc], wt[nc], gp[nc], i;
9 Priors:

10 gp[1] ˜ Uniform(200, 600);
11 gp[2] ˜ Uniform(gp[1], 600);
12 for (i, 1:nc) {
13 mean[i] ˜ Normal(gp[i], gpsig);
14 sigma[i] ˜ HalfNormal(50);
15 }
16 wt[1] ˜ Uniform(0.25, 0.75);
17 wt[2] = 1 - wt[1];
18 Likelihood:
19 for (i, 1:N) {
20 salary[i] ˜ NormalMixture(mean[], sigma[], wt[], nc);
21 }
22 Extras:
23 Monitored:
24 mean[], sigma[];

In the literature, nearly all Bayesian models are hierarchical; it is the standard method
for incorporating prior information into the model. In this document, other hierarchical
models include Iris and SAT.

Figure 31 shows again a comparison of the marginals. They are virtually identical to
those from model 1.
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Figure 31: Marginals for Salaries Mixture (model 2)
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Table 6 lists posterior values for the parameters in both models. As with the marginal
plots, corresponding values are very similar.

Table 6: Posterior Values for Salaries Models

Model Parameter Estimate 95% Credible Interval
MAP Mean Lower Limit Upper Limit

1

mean[1] 369.753 370.744 361.473 379.925
mean[2] 482.296 483.043 460.394 506.770
sigma[1] 53.4228 53.9258 47.8811 60.1002
sigma[2] 91.9098 92.1396 83.3319 100.869

2

mean[1] 370.013 370.885 361.773 380.204
mean[2] 482.284 483.292 460.274 506.966
sigma[1] 53.4762 53.9802 48.8472 60.0801
sigma[2] 91.8688 92.0678 83.0155 100.707

Figure 32 shows the data plus the model-2 posterior (solid line) as well as the separate
components (dashed lines). There is considerable overlap of the components so posterior
weights are a bit problematical. The weights after relabeling are listed in the Report. In
this mixture, they were given as 0.524 for component #1 and 0.476 for component #2
(from component PDFs averaged over the entire trace). The probAssign.txt file listed 707
points with probability > 0.5 for component #1 (60.9 percent).
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N = 1,161

Figure 32: Data vs. Model2 (mean parameters)
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14 SAT
This example illustrates one-way analysis of variance (ANOVA). The data are SAT scores
for five high schools in northern Virginia, USA, for 2014. The question in this analysis
is whether the putative differences, implied by distinguishing the high schools, are real.
The usual ANOVA metric is the fraction of the total variance due to this distinction. The
remaining variance comes from the fact that the scores in the individual rows are different
as well.

The standard equations used in ANOVA compare rows with each other but assume
that the within-row variance is the same for all rows. The model here makes that same
assumption. It would be easy to relax this assumption (exercise left for the reader).
Runtime: 39 s

With the model as shown, one gets the following solution:

Table 7: SAT ANOVA (solution)

Unknown Estimate 95% Credible Interval
MAP Mean Lower Limit Upper Limit

fb 0.00159 0.301 0.0512 0.558
var.between 26 7316 300 16766
var.within 16321 15320 10399 20786

theta 1602 1586 1499 1671

The model Extra, fb, quantifies the fraction of the variance due to distinguishing the
rows (high schools). Clearly, it is outweighed by the within-row variance so one cannot
justifiably claim that the high schools are different in this regard.

Figure 33 shows a variance comparison.
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Model 16: SAT

1 Constants:
2 N = 5, n1 = 25, n2 = 13, n3 = 4, n4 = 11, n5 = 5;
3 Data:
4 s1[n1], s2[n2], s3[n3], s4[n4], s5[n5];
5 Variables:
6 mu[N], theta, var.within, var.between, sig, fb, hs, s;
7 Priors:
8 theta ˜ HalfNormal(10000);
9 var.within ˜ HalfNormal(10000);

10 var.between ˜ HalfNormal(10000);
11 sig = sqrt(var.between);
12 for (hs, 1:N) {
13 mu[hs] ˜ Normal(theta, sig);
14 }
15 Likelihood:
16 sig = sqrt(var.within);
17 for (s, 1:n1) {
18 s1[s] ˜ Normal(mu[1], sig);
19 }
20 for (s, 1:n2) {
21 s2[s] ˜ Normal(mu[2], sig);
22 }
23 for (s, 1:n3) {
24 s3[s] ˜ Normal(mu[3], sig);
25 }
26 for (s, 1:n4) {
27 s4[s] ˜ Normal(mu[4], sig);
28 }
29 for (s, 1:n5) {
30 s5[s] ˜ Normal(mu[5], sig);
31 }
32 Extras:
33 fb = var.between/(var.within + var.between);
34 Monitored:
35 theta, var.within, var.between, fb;
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Figure 33: Variance Within vs. Variance Between
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15 TriplePoint
The data for this example, just four points, comprise the current literature values for the
triple-point temperature of n-nonadecane. The triple point of a pure substance is the
{temperature, pressure} ordered pair at which the substance has its solid, liquid and gas
phases all in equilibrium at the same time which is just barely possible. The phase rule
of thermodynamics indicates that, with this threefold equilibrium, the number of degrees
of freedom shrink to zero. Therefore, this point is unique making it a useful, well-defined
standard for calibration purposes.

Triple-point temperatures for the normal alkanes tend to increase monotonically with
carbon number and values for even-numbered homologues are generally well known since
they are much more common than the odd-numbered ones (for reasons having to do with
biochemistry). The triple-point temperatures for n-octadecane (C18) and n-eicosane (C20)
are 301.0 K and 309.6 K, respectively.

Given the allowable range for the target temperature, a prior of Normal(305.3, 2.5)
would usually be vague enough to yield good results. However, that prior distribution
would stretch into invalid territory so we truncate it to keep it from going where Nature
says it doesn’t belong. Lines 8–9 in the model implement this truncation.
Runtime: 2 s

Model 17: TriplePoint

1 Constants:
2 N = 4; // # of points
3 Data:
4 Tp[N];
5 Variables:
6 trueTp, sigma, i;
7 Priors:
8 trueTp ˜ Generic(log((trueTp >= 301.0) && (trueTp <= 309.6))
9 - 1.83523 - 0.08*(trueTp - 305.3)ˆ2 + 0.0893039, 301.0, 309.6);

10 sigma ˜ Jeffreys(0.1, 20);
11 Likelihood:
12 for (i, 1:N) {
13 Tp[i] ˜ Normal(trueTp, sigma);
14 }
15 Extras:
16 Monitored:
17 trueTp, sigma;
18 Goodness:
19 gdnsX ˜ Normal(trueTp, sigma);
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In line 8, note that MacMCMC defines true = 1 and false = 0, both numeric as well as
Boolean. Also, the odd-looking constants in line 9 readjust the normalization constant to
the truncated range.

The mean posterior estimate for the true triple-point temperatutre, trueTp, is 306.0 K
with a 95-percent credible interval of [302.9, 309.3].8

In the q-q plot9 below, the credible-interval band range indicates that a measurement of
Tp = 314 has, by itself, an uncertainty that exceeds what is acceptable. Posterior-predictive
uncertainties are conditioned on the selected observation (cf. footnote, page 39) and so are
not restricted to any limits applicable to the parameter, trueTp, which has the credible
interval given above.

Figure 34: Goodness-of-fit for TriplePoint

Finally, FWIW, if we carry out a traditional frequentist analysis, which uses the data
alone, ignoring prior information, and the t-distribution (generally recommended for a
small sample), we get a maximum-likelihood value for trueTp = 307.0 K and a 95-percent
central confidence interval of [299.1, 314.9]. Clearly, the latter cannot describe “trueTp”
since it stretches far beyond the known bounds.

8The 99-percent interval is [301.9, 309.6].
9The leftmost point on this plot is half-hidden by the axis.
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